Pharmaceutical Research

, Volume 27, Issue 2, pp 211–223

Mucosal Vaccines: Recent Progress in Understanding the Natural Barriers

  • Olga Borges
  • Filipa Lebre
  • Dulce Bento
  • Gerrit Borchard
  • Hans E. Junginger
Expert Review


It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.

Key Words

adjuvants immunoglobulin A mucosal immune system mucosal vaccines 



antigen presenting cells


bronchus-associated lymphoid tissue


chemokine ligand 25


chemokine ligand 28


chemokine receptor 9


chemokine receptor 10


common mucosal Immune system


cytotoxic T lymphocyte


dendritic cells


follicle-associated epithelium


gut-associated lymphoid tissue


Hepatitis B virus


intraepithelial lymphocytes


mucosal adressin cell-adhesion molecule1


mucosa-associated lymphoid tissues

M cells

microfold epithelial cells


major histocompatibility complex


mesenteric lymphoid nodes


pathogen-associated molecular patterns




secretory immunoglobulin A


thymus-expressed chemokine


transforming grown factor


T helper 2 cells


Toll-like receptors


vascular cell adhesion molecule 1


  1. 1.
    Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine. 2000;18(15):1436–47.PubMedGoogle Scholar
  2. 2.
    Goldsby RA. Immunology. 5th ed. New York: W.H. Freeman; 2003.Google Scholar
  3. 3.
    Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5(12):905–16.PubMedGoogle Scholar
  4. 4.
    Mahoney F, Kane M. Hepatitis B vaccine. In: Plotkin SA, Orenstein WA, editors. Vaccines. 3rd ed. Philadelphia: W.B. Saunders Co.; 1999. p. 158–82.Google Scholar
  5. 5.
    Hilleman MR. Yeast recombinant hepatitis B vaccine. Infection. 1987;15(1):3–7.PubMedGoogle Scholar
  6. 6.
    Hilleman MR. Overview of the pathogenesis, prophylaxis and therapeusis of viral hepatitis B, with focus on reduction to practical applications. Vaccine. 2001;19(15–16):1837–48.PubMedGoogle Scholar
  7. 7.
    Hilleman MR, Ellis R. Vaccines made from recombinant yeast cells. Vaccine. 1986;4(2):75–6.PubMedGoogle Scholar
  8. 8.
    Krugman S, Giles JP. Viral hepatitis, type B (MS-2-strain). Further observations on natural history and prevention. N Engl J Med. 1973;288(15):755–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Budkowska A, Shih JW, Gerin JL. Immunochemistry and polypeptide composition of hepatitis B core antigen (HBc Ag). J Immunol. 1977;118(4):1300–5.PubMedGoogle Scholar
  10. 10.
    Stewart VA, McGrath SM, Walsh DS, Davis S, Hess AS, Ware LA, et al. Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS, S/AS02A. Vaccine. 2006;24(42–43):6483–92.PubMedGoogle Scholar
  11. 11.
    Shih JW, Gerin JL. Proteins of hepatitis B surface antigen. J Virol. 1977;21(1):347–57.PubMedGoogle Scholar
  12. 12.
    Shih JW, Gerin JL. Proteins of hepatitis B surface antigen: amino acid compositions of the major polypeptides. J Virol. 1977;21(3):1219–22.PubMedGoogle Scholar
  13. 13.
    Stephenne J. Recombinant versus plasma-derived hepatitis B vaccines: issues of safety, immunogenicity and cost-effectiveness. Vaccine. 1988;6(4):299–303.PubMedGoogle Scholar
  14. 14.
    Stephenne J. Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine 1990;8 Suppl S69–73: discussion S79–80.Google Scholar
  15. 15.
    Van Damme P, Cramm M, Safary A, Vandepapeliere P, Meheus A. Heat stability of a recombinant DNA hepatitis B vaccine. Vaccine. 1992;10(6):366–7.PubMedGoogle Scholar
  16. 16.
    Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4 Suppl):S45–53.PubMedGoogle Scholar
  17. 17.
    Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.PubMedGoogle Scholar
  18. 18.
    Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Russell MW, Moldoveanu Z, et al. IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci U S A. 1987;84(8):2449–53.PubMedGoogle Scholar
  19. 19.
    McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol. 1979;122(5):1892–8.PubMedGoogle Scholar
  20. 20.
    Wu JX, Tai J, Cheung SC, Tze WJ. Assessment of the protective effect of uncoated alginate microspheres. Transplant Proc. 1997;29(4):2146–7.PubMedGoogle Scholar
  21. 21.
    Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.PubMedGoogle Scholar
  22. 22.
    Kunkel EJ, Butcher EC. Plasma-cell homing. Nat Rev Immunol. 2003;3(10):822–9.PubMedGoogle Scholar
  23. 23.
    Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev. 2001;50(1–2):81–106.PubMedGoogle Scholar
  24. 24.
    Kuper CF, Koornstra PJ, Hameleers DM, Biewenga J, Spit BJ, Duijvestijn AM, et al. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992;13(6):219–24.PubMedGoogle Scholar
  25. 25.
    Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001;51(1–3):21–42.PubMedGoogle Scholar
  26. 26.
    Illum L, Davis SS. Nasal vaccination: a non-invasive vaccine delivery method that holds great promise for the future. Adv Drug Deliv Rev. 2001;51(1–3):1–3.PubMedGoogle Scholar
  27. 27.
    Vajdy M, Baudner B, Del Giudice G, O’Hagan D. A vaccination strategy to enhance mucosal and systemic antibody and T cell responses against influenza. Clin Immunol. 2007;123(2):166–75.PubMedGoogle Scholar
  28. 28.
    Porgador A, Staats HF, Itoh Y, Kelsall BL. Intranasal immunization with cytotoxic T-lymphocyte epitope peptide and mucosal adjuvant cholera toxin: selective augmentation of peptide-presenting dendritic cells in nasal mucosa-associated lymphoid tissue. Infect Immun. 1998;66(12):5876–81.PubMedGoogle Scholar
  29. 29.
    Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300.PubMedGoogle Scholar
  30. 30.
    Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331–41.PubMedGoogle Scholar
  31. 31.
    Gewirtz AT, Madara JL. Periscope, up! Monitoring microbes in the intestine. Nat Immunol. 2001;2(4):288–90.PubMedGoogle Scholar
  32. 32.
    Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M, et al. IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol. 2004;172(10):6259–64.PubMedGoogle Scholar
  33. 33.
    Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P, et al. Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J Infect Dis. 2004;189(5):828–32.PubMedGoogle Scholar
  34. 34.
    Snoeck V, Peters IR, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res. 2006;37(3):455–67.PubMedGoogle Scholar
  35. 35.
    Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol. 1997;51:311–40.PubMedGoogle Scholar
  36. 36.
    Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, et al. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer’s patches. J Virol. 2004;78(2):947–57.PubMedGoogle Scholar
  37. 37.
    Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest. 1997;100(1):6–10.PubMedGoogle Scholar
  38. 38.
    Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85.PubMedGoogle Scholar
  39. 39.
    Nagler-Anderson C, Shi HN. Peripheral nonresponsiveness to orally administered soluble protein antigens. Crit Rev Immunol. 2001;21(1–3):121–31.PubMedGoogle Scholar
  40. 40.
    Nagler-Anderson C. Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol. 2001;1(1):59–67.PubMedGoogle Scholar
  41. 41.
    Mayer L, Shao L. Therapeutic potential of oral tolerance. Nat Rev Immunol. 2004;4(6):407–19.PubMedGoogle Scholar
  42. 42.
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7.PubMedGoogle Scholar
  43. 43.
    Viney JL, Mowat AM, O’Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol. 1998;160(12):5815–25.PubMedGoogle Scholar
  44. 44.
    Scheinecker C, McHugh R, Shevach EM, Germain RN. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med. 2002;196(8):1079–90.PubMedGoogle Scholar
  45. 45.
    Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A. Visualization of peptide presentation following oral application of antigen in normal and Peyer’s patches-deficient mice. Eur J Immunol. 2003;33(5):1292–301.PubMedGoogle Scholar
  46. 46.
    Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol. 2001;31(4):1278–87.PubMedGoogle Scholar
  47. 47.
    Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–16.PubMedGoogle Scholar
  48. 48.
    Stertman L, Lundgren E, Sjoholm I. Starch microparticles as a vaccine adjuvant: only uptake in Peyer’s patches decides the profile of the immune response. Vaccine. 2006;24(17):3661–8.PubMedGoogle Scholar
  49. 49.
    Zuo YY, Alolabi H, Shafiei A, Kang N, Policova Z, Cox PN, et al. Chitosan enhances the in vitro surface activity of dilute lung surfactant preparations and resists albumin-induced inactivation. Pediatr Res. 2006;60(2):125–30.PubMedGoogle Scholar
  50. 50.
    O’Hagan D. Microparticles as vaccine delivery systems. In: Schijins V, O’Hagan, D., editors. Immunopotentiators in modern vaccines, 1st ed. Academic; 2006. p. 123–47.Google Scholar
  51. 51.
    Hansen B, Sokolovska A, HogenEsch H, Hem SL. Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine. 2007;25(36):6618–24.PubMedGoogle Scholar
  52. 52.
    Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007;6(5):685–98.PubMedGoogle Scholar
  53. 53.
    Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol. 1995;6:229–48.PubMedGoogle Scholar
  54. 54.
    Patel P, Salapatek AM. Pollinex Quattro: a novel and well-tolerated, ultra short-course allergy vaccine. Expert Rev Vaccines. 2006;5(5):617–29.PubMedGoogle Scholar
  55. 55.
    Sharma S, Mukkur TK, Benson HA, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98(3):812–43.PubMedGoogle Scholar
  56. 56.
    Vogel FR, Caillet C, Kusters IC, Haensler J. Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines. 2009;8(4):483–92.PubMedGoogle Scholar
  57. 57.
    Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines. 2007;6(5):797–808.PubMedGoogle Scholar
  58. 58.
    Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009;27(33):4388–401.PubMedGoogle Scholar
  59. 59.
    Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev Vaccines. 2007;6(5):711–21.PubMedGoogle Scholar
  60. 60.
    McLachlan JB, Shelburne CP, Hart JP, Pizzo SV, Goyal R, Brooking-Dixon R, et al. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med. 2008;14(5):536–41.PubMedGoogle Scholar
  61. 61.
    Dupuis M, Denis-Mize K, LaBarbara A, Peters W, Charo IF, McDonald DM, et al. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol. 2001;31(10):2910–8.PubMedGoogle Scholar
  62. 62.
    van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine. 2003;21(13-14):1400–8.PubMedGoogle Scholar
  63. 63.
    Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev. 2005;57(3):465–74.PubMedGoogle Scholar
  64. 64.
    Almeida JD, Edwards DC, Brand CM, Heath TD. Formation of virosomes from influenza subunits and liposomes. Lancet. 1975;2(7941):899–901.PubMedGoogle Scholar
  65. 65.
    O’Hagan DT. Microparticles and polymers for the mucosal delivery of vaccines. Adv Drug Deliv Rev. 1998;34(2–3):305–20.PubMedGoogle Scholar
  66. 66.
    O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines. 2003;2(2):269–83.PubMedGoogle Scholar
  67. 67.
    O’Hagan DT, Singh M, Ulmer JB. Microparticles for the delivery of DNA vaccines. Immunol Rev. 2004;199:191–200.PubMedGoogle Scholar
  68. 68.
    Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev. 2005;57(3):333–55.PubMedGoogle Scholar
  69. 69.
    Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev. 2005;57(3):357–76.PubMedGoogle Scholar
  70. 70.
    Jilek S, Merkle HP, Walter E. DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev. 2005;57(3):377–90.PubMedGoogle Scholar
  71. 71.
    Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev. 2005;57(3):475–82.PubMedGoogle Scholar
  72. 72.
    O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov. 2003;2(9):727–35.PubMedGoogle Scholar
  73. 73.
    Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14(3):259–66.PubMedGoogle Scholar
  74. 74.
    Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50(1–2):107–42.PubMedGoogle Scholar
  75. 75.
    Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.PubMedGoogle Scholar
  76. 76.
    Cano-Cebrian MJ, Zornoza T, Granero L, Polache A. Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr Drug Deliv. 2005;2(1):9–22.PubMedGoogle Scholar
  77. 77.
    Aprahamian M, Michel C, Humbert W, Devissaguet JP, Damge C. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol Cell. 1987;61(1–2):69–76.PubMedGoogle Scholar
  78. 78.
    MacDonald TT. The mucosal immune system. Parasite Immunol. 2003;25(5):235–46.PubMedGoogle Scholar
  79. 79.
    Jabbal-Gill I, Lin W, Jenkins P, Watts P, Jimenez M, Illum L, et al. Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines. Vaccine. 1999;18(3–4):238–50.PubMedGoogle Scholar
  80. 80.
    Delgado A, Lavelle EC, Hartshorne M, Davis SS. PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine. 1999;17(22):2927–38.PubMedGoogle Scholar
  81. 81.
    Manocha M, Pal PC, Chitralekha KT, Thomas BE, Tripathi V, Gupta SD, et al. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine. 2005;23(48–49):5599–617.PubMedGoogle Scholar
  82. 82.
    Rajkannan R, Dhanaraju MD, Gopinath D, Selvaraj D, Jayakumar R. Development of hepatitis B oral vaccine using B-cell epitope loaded PLG microparticles. Vaccine. 2006;24(24):5149–57.PubMedGoogle Scholar
  83. 83.
    Stanley AC, Buxton D, Innes EA, Huntley JF. Intranasal immunisation with Toxoplasma gondii tachyzoite antigen encapsulated into PLG microspheres induces humoral and cell-mediated immunity in sheep. Vaccine. 2004;22(29–30):3929–41.PubMedGoogle Scholar
  84. 84.
    Wu M, Shi L, Liu S, Li J, Wu K, Wang L, et al. The effect of entrapment of CpG sequence with cationic PLG nanoparticles on the immune responses of mice to pig paratyphoid vaccine. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005;22(5):975–9.PubMedGoogle Scholar
  85. 85.
    Yeh MK, Coombes AG, Chen JL, Chiang CH. Japanese encephalitis virus vaccine formulations using PLA lamellar and PLG microparticles. J Microencapsul. 2002;19(5):671–82.PubMedGoogle Scholar
  86. 86.
    Almeida AJ, Alpar HO, Brown MR. Immune response to nasal delivery of antigenically intact tetanus toxoid associated with poly(L-lactic acid) microspheres in rats, rabbits and guinea-pigs. J Pharm Pharmacol. 1993;45(3):198–203.PubMedGoogle Scholar
  87. 87.
    Gupta RK, Singh M, O’Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev. 1998;32(3):225–46.PubMedGoogle Scholar
  88. 88.
    Chesko J, Kazzaz J, Ugozzoli M. T, Singh M. An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. J Pharm Sci. 2005;94(11):2510–9.PubMedGoogle Scholar
  89. 89.
    Mollenkopf HJ, Dietrich G, Fensterle J, Grode L, Diehl KD, Knapp B, et al. Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. Vaccine. 2004;22(21-22):2690–5.PubMedGoogle Scholar
  90. 90.
    Kim B, Bowersock T, Griebel P, Kidane A, Babiuk LA, Sanchez M, et al. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J Control Release. 2002;85(1–3):191–202.PubMedGoogle Scholar
  91. 91.
    Strindelius L, Degling Wikingsson L, Sjoholm I. Extracellular antigens from Salmonella enteritidis induce effective immune response in mice after oral vaccination. Infect Immun. 2002;70(3):1434–42.PubMedGoogle Scholar
  92. 92.
    Holmgren J, Harandi A, Lebens M, Sun J-B, Anjuère F, Czerkinsky C. Mucosal adjuvants based on cholera toxin and E. coli heat-labile enterotoxin. In: Schijns V, O’Hagan, D., editors. Immunopotentiators in modern vaccines, 1st ed. Academic; 2006. p. 235–52.Google Scholar
  93. 93.
    Douce G, Fontana M, Pizza M, Rappuoli R, Dougan G. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect Immun. 1997;65(7):2821–8.PubMedGoogle Scholar
  94. 94.
    Douce G, Turcotte C, Cropley I, Roberts M, Pizza M, Domenghini M, et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci U S A. 1995;92(5):1644–8.PubMedGoogle Scholar
  95. 95.
    Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine. 2002;20(19–20):2431–8.PubMedGoogle Scholar
  96. 96.
    Levine MM. Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr. 2000;31(4):336–55.PubMedGoogle Scholar
  97. 97.
    Malkevitch NV, Robert-Guroff M. A call for replicating vector prime-protein boost strategies in HIV vaccine design. Expert Rev Vaccines. 2004;3(4 Suppl):S105–17.PubMedGoogle Scholar
  98. 98.
    Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res. 2006;37(3):511–39.PubMedGoogle Scholar
  99. 99.
    McCluskie MJ, Weeratna RD. CpG oligodeoxynucleotides as vaccine adjuvants. In: Schijins V, O’Hagan D., editors. Immunopotentiators in modern vaccines, 1st ed. Academic; 2006. p. 73–92.Google Scholar
  100. 100.
    McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol. 2002;169(7):3914–9.PubMedGoogle Scholar
  101. 101.
    Chabot S, Brewer A, Lowell G, Plante M, Cyr S, Burt DS, et al. A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine. 2005;23(11):1374–83.PubMedGoogle Scholar
  102. 102.
    Cooper CL, Davis HL, Angel JB, Morris ML, Elfer SM, Seguin I, et al. CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. Aids. 2005;19(14):1473–9.PubMedGoogle Scholar
  103. 103.
    Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM, et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol. 2004;24(6):693–701.PubMedGoogle Scholar
  104. 104.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374(6522):546–9.PubMedGoogle Scholar
  105. 105.
    Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002;32(7):1958–68.PubMedGoogle Scholar
  106. 106.
    Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol. 2001;166(5):3451–7.PubMedGoogle Scholar
  107. 107.
    McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol. 1998;161(9):4463–6.PubMedGoogle Scholar
  108. 108.
    McCluskie MJ, Davis HL. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine. 2000;19(4–5):413–22.PubMedGoogle Scholar
  109. 109.
    Kwant A, Rosenthal KL. Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine. 2004;22(23–24):3098–104.PubMedGoogle Scholar
  110. 110.
    Eastcott JW, Holmberg CJ, Dewhirst FE, Esch TR, Smith DJ, Taubman MA. Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine. 2001;19(13–14):1636–42.PubMedGoogle Scholar
  111. 111.
    McCluskie MJ, Weeratna RD, Krieg AM, Davis HL. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine. 2000;19(7–8):950–7.PubMedGoogle Scholar
  112. 112.
    McCluskie MJ, Weeratna RD, Payette PJ, Davis HL. Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA. FEMS Immunol Med Microbiol. 2002;32(3):179–85.PubMedGoogle Scholar
  113. 113.
    Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol Med Microbiol. 2001;32(1):65–71.PubMedGoogle Scholar
  114. 114.
    Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274(25):17406–9.PubMedGoogle Scholar
  115. 115.
    Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999;163(1):1–5.PubMedGoogle Scholar
  116. 116.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–8.PubMedGoogle Scholar
  117. 117.
    An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, et al. Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology. 2002;106(1):38–45.PubMedGoogle Scholar
  118. 118.
    Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274(16):10689–92.PubMedGoogle Scholar
  119. 119.
    Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000;105(4):497–504.PubMedGoogle Scholar
  120. 120.
    Rhee SH, Hwang D. Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem. 2000;275(44):34035–40.PubMedGoogle Scholar
  121. 121.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.PubMedGoogle Scholar
  122. 122.
    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167(4):1882–5.PubMedGoogle Scholar
  123. 123.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.PubMedGoogle Scholar
  124. 124.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.PubMedGoogle Scholar
  125. 125.
    Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001;31(10):3026–37.PubMedGoogle Scholar
  126. 126.
    Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol. 2001;167(7):3555–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Olga Borges
    • 1
  • Filipa Lebre
    • 1
  • Dulce Bento
    • 1
  • Gerrit Borchard
    • 2
  • Hans E. Junginger
    • 3
  1. 1.Centre for Neuroscience and Cell Biology & Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  2. 2.School of Pharmaceutical Sciences Geneva-LausanneUniversity of GenevaGenevaSwitzerland
  3. 3.Faculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand

Personalised recommendations