Pharmaceutical Research

, Volume 27, Issue 1, pp 72–81 | Cite as

The Application of Electrostatic Dry Powder Deposition Technology to Coat Drug-Eluting Stents

  • Ravi Kumar Nukala
  • Harikrishna Boyapally
  • Ian J. Slipper
  • Andy P. Mendham
  • Dennis DouroumisEmail author
Research Paper



A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles.


Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces.


The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion.


EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.

Key Words

coating drug eluting stents electrostatic deposition platelet adhesion supercritical fluids 


  1. 1.
    Sigwart U, Puel J, Mirkovitch V, Joffe F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316:701–06.PubMedCrossRefGoogle Scholar
  2. 2.
    Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev. 2006;58:387–401.CrossRefPubMedGoogle Scholar
  3. 3.
    Lally C, Kelly DJ, Prendergast PG. Stents. In: Akay M, editor. Encyclopedia of biomedical engineering. New Jersey: Willey; 2006. p. 1–10.Google Scholar
  4. 4.
    Hara H, Nakamura M, Palmaz JC, Schwartz RS. Role of stent and coatings on restenosis and thrombosis. Adv Drug Deliv Rev. 2006;58:37–86.CrossRefGoogle Scholar
  5. 5.
    Sousa JE, Serruys PW, Costa MA. New frontier in cardiology: drug eluting stents: Part II. Circulation. 2003;107:2383–89.CrossRefPubMedGoogle Scholar
  6. 6.
    Lewis AL, Cumming ZL, Goreish HH, Kirkwood LC, Tolhurst LA, Stratford PW. Crosslinkable coatings from phosphorylcholine — base polymers. Biomaterials. 2001;22:99–111.CrossRefPubMedGoogle Scholar
  7. 7.
    Lewis AL, Furze JD, Small S, Robertson JD, Higgins BJ, Taylor S, et al. Long-term stability of a coronary stent coating post-implantation. J Biomed Mater Res Appl B Biomater. 2002;63:699–705.CrossRefGoogle Scholar
  8. 8.
    De Scheerder I, Wang K, Wilczek K, Meuleman D, van Amsterdam R, Vogel G, et al. Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents. Circulation. 1997;95:1549–53.PubMedGoogle Scholar
  9. 9.
    Serruys PW, van Hout B, Bonnier H, Legrand V, Garcia E, Macaya C, et al. Randomised comparison of implantation of heparin-coated stents with balloon angioplasty in selected patients with coronary artery disease (Benestent II). Lancet. 1998;352:673–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Whelan DM, van der Giessen WJ, Krabbendam SC, van Vliet EA, Verdouw PD, Serruys PW, et al. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart Drug. 2000;83:338–45.Google Scholar
  11. 11.
    Chen MC, Liang HF, Chiu YL, Chang Y, Wei HJ, Sung HW. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Rel. 2005;108:178–89.CrossRefGoogle Scholar
  12. 12.
    Tarcha PJ, Verlee D, Hui HW, Setesak J, Antohe B, Radulesku D, et al. The application of Ink-Jet Technology for the coating and loading of drug-eluting stents. Ann Biomed Eng. 2007;35:1791–99.CrossRefPubMedGoogle Scholar
  13. 13.
    Ozbek C, Heisel A, Gross B, Bay W, Schieffer H. Coronary implantation of silicone-carbide-coated Palmaz-Schatz stents in patients with high risk of stent thrombosis without oral anticoagulation. Cathet Cardiovasc Diagn. 1997;41:71–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen JY, Leng YX, Tian XB, Wang LP, Huang N, Chu PK, et al. Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta(+5))O2 thin films. Biomaterials. 2002;23:2545–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Ekqvist S, Svedman C, Lundh T, Möller H, Björk J, Bruze M. A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents. Contact Dermatitis. 2008;59:137–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuraishi K, Iwata H, Nakano S, Kubota S, Tonami H, Toda M, et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J Biomed Mater Res B Appl Biomater. 2009;88:230–9.PubMedGoogle Scholar
  17. 17.
    Kim TG, Lee H, Jang Y, Park TG. Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel. Biomacromolecules; 2009. (in press).Google Scholar
  18. 18.
    De Scheerder I, Verbeken E, Van Humbeeck J. Metallic surface modification. Semin Interv Cardiol. 1998;3:139–44.CrossRefPubMedGoogle Scholar
  19. 19.
    FDA patient safety news. Importance of antiplatelet therapy with drug eluting stents. (assessed 09/03)
  20. 20.
    Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Bleich J, Mueller BW, Wassmus W. Aerosol solvent extraction system. A new microparticle production technique. Int J Pharm. 1993;97:111–21.CrossRefGoogle Scholar
  22. 22.
    Zochowska D, Bartłomiejczyk I, Kaminska A, Senatorski G, Paczek L. High-performance liquid chromatography versus immunoassay for the measurement of sirolimus: comparison of two methods. Transplant Proc. 2006;38:78–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Steckel H, Thies J, Müller BW. Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide. Int J Pharma. 1997;152:99–110.CrossRefGoogle Scholar
  24. 24.
    Bustami RT, Chan HK, Dehghani F, Foster NR. Generation of micro - particles of proreins for aerosol delivery using high pressure modified carbon dioxide. Pharm Res. 2000;17:1360–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim YH, Sioutas C, Fine P, Shing KS. Effect of albumin on physical characteristics of drug particles produced by supercritical fluid technology. Powder Technol. 2008;182:354–63.CrossRefGoogle Scholar
  26. 26.
    Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. Eur J Pharm Sci. 2000;10:1–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Nelson FC, Stachel SJ, Eng CP, Sehgal SN. Manipulation of the C(22)–C(27) region of rapamycin: stability issues and biological implications. Bioorg Med Chem Lett. 1999;9:295–300.CrossRefPubMedGoogle Scholar
  28. 28.
    Ricciutelli M, Di Martino P, Barboni L, Martelli S. Evaluation of rapamycin chemical stability in volatile-organic solvents by HPLC. J Pharm Biomed Anal. 2006;41:1070–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou CC, Stewart KD, Dhaon MK. An intramolecular ionic hydrogen bond stabilizes a cis amide bond rotamer of a ring-opened rapamycin-degradation product. Magn Reson Chem. 2005;43:41–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee YK, Park JH, Moon HT, Lee D, Yun JH, Byun Y. The short-term effects on restenosis and thrombosis of echinomycin-eluting stents topcoated with a hydrophobic heparin-containing polymer. Biomaterials. 2007;28:1523–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang X, Venkatraman SS, Boey FY, Loo JS, Tan LP. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials. 2006;27:5588–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Barletta M, Gisario A, Tagliaferri V. Electrostatic spray deposition (ESD) of polymeric powders on thermoplastic (PA66) substrate. Surf Coat Techn. 2006;201:296–308.CrossRefGoogle Scholar
  33. 33.
    Thierry B, Merhi Y, Silver J, Tabrizian M. Biodegradable membrane-covered stent from chitosanbased polymersGoogle Scholar
  34. 34.
    Lewis A. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf, B Biointerfaces. 2000;18:261–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ravi Kumar Nukala
    • 1
  • Harikrishna Boyapally
    • 1
  • Ian J. Slipper
    • 1
  • Andy P. Mendham
    • 1
  • Dennis Douroumis
    • 1
    Email author
  1. 1.University of Greenwich, School of ScienceKentUK

Personalised recommendations