Pharmaceutical Research

, 27:46

The Targeting Behavior of Folate-Nanohydrogel Evaluated by Near Infrared Imaging System in Tumor-Bearing Mouse Model

  • Jian Zhang
  • Dawei Deng
  • Zhiyu Qian
  • Fei Liu
  • Xinyang Chen
  • Lianxiao An
  • Yueqing Gu
Research Paper

Abstract

Purpose

To synthesize P[(Folate-Allylamine)-co-(N-isopropylacrylamine)- co-Acrylamide] (P(FoAAn-co-NIPA-AAm), folate-NHG) with appropriate diameter and lower critical solution temperature (LCST) for targeting to folate receptor (FR) expressing tumors.

Methods

Folate-NHG was synthesized by free-radical precipitation polymerization method reported in our previous work and other reports. LCST, diameter and morphology of folate-NHG were characterized by UV-vis spectrophotometer, laser particle size analyzer (LPSA) and transmission electron microscope (TEM), respectively. No.12 near infrared dye (NIRD-12) was entrapped into folate-NHG by hydrophobic association to trace the in vivo dynamic behavior of folate-NHG. This process was evaluated by a homemade near infrared (NIR) imaging system.

Results

Spherical folate-NHG with diameter of about 50 nm and LCST of about 40°C was successfully synthesized. The photo stability of NIRD-12 was strengthened after being entrapped into folate-NHG, which enabled NIRD-12 to better trace the in vivo dynamic process of folate-NHG. Folate-NHG showed good targeting capability for all three folate receptor expressing tumor models (SMMC-7721, Bel-7402 and HeLa) with different sizes, and this accumulation could last for more than 96 h. D-folate-NHG, synthesized with double amount of FoAAn, showed better targeting effect for SMMC-7721 tumor model than that of folate-NHG.

Conclusions

Folate-NHG could actively accumulate in three models of folate receptor positive tumors with different sizes and keep retention for more than 96 h, which enables it to be used as a diagnostic reagent or anti-tumor drug carrier for tumor therapy.

KEY WORDS

active targeting folate receptor nanohydrogel NIR imaging tumor 

Abbreviations

AAm

Acrylamide

AAn

Allylamine

BIS

N,N-methylene-bis-acrylamide

CCD

charge-coupled device

CT

computed tomography

DCC

N, N’-Dicyclohexylcarbodiimide

DCU

dicyclohexylurea

D-folate-NHG

special folate-NHG synthesized with as double amount of FoAAn as that of folate-NHG

DMSO

dimethyl sulfoxide

FBP

folate binding protein

FoAAn

folate-Allylamine

folate-NHG or P(FoAAn-co-NIPA-co-AAm)

P[(Folate-Allylamine)-co-(N-isopropylacrylamide)-co-Acrylamide]

FR

folate receptor

KPS

Potassium persulfate

LC

loading content

LC-MS

liquid chromatograph-mass spectrum

LCST

lower critical solution temperature

LPSA

laser particle size analyzer

MR

magnetic resonance

MTT

methyl thiazolyl tetrazolium

NHG

nanohydrogel

NHS

N-hydroxysuccinimide

NIPA

N-isopropylacryl-amide

NIR

near infrared

NIRD-12

No.12 near infrared dye

non-NHG

P[(N-isopropylacrylamide)-co-Acrylamide]

PNIPA

P(N-isopropylacrylamide)

ROI

region of interest

RPMI

Roswell Park Memorial Institute

RT

room temperature

SBF

simulated body fluid

SDS

sodiumdodecyl sulfate

TEA

triethanolamine

TEM

transmission electron microscope

US

ultrasonography

Wt%

((WAAm/WNIPA) × 100%)

References

  1. 1.
    Shao K, Hou Q, Duan W, Go ML, Wong KP, Li QT. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J Control Release. 2006;115:150–7. doi:10.1016/j.jconrel.2006.07.024.CrossRefPubMedGoogle Scholar
  2. 2.
    Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128:23–31. doi:10.1016/j.jconrel.2008.02.003.CrossRefPubMedGoogle Scholar
  3. 3.
    Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67. doi:10.1016/j.biomaterials.2007.06.011.CrossRefPubMedGoogle Scholar
  4. 4.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6. doi:10.1158/1078-0432.CCR-07-1441.CrossRefPubMedGoogle Scholar
  5. 5.
    Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem. 2007;7:552–8. pmid:17896915.PubMedGoogle Scholar
  6. 6.
    Irache JM, Salman HH, Gamazo C, Espuelas S. Mannosetargeted systems for the delivery of therapeutics. Expert Opin Drug Deliv. 2008;5:703–24. doi:10.1517/17425247.5.6.703.CrossRefPubMedGoogle Scholar
  7. 7.
    Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid based receptor targeting for imaging and therapy of cancer and inflammatory disease. Acc Chem Res. 2008;41:120–9. doi:10.1021/ar7000815.CrossRefPubMedGoogle Scholar
  8. 8.
    Salazar MDA, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics. Cancer Metastasis Rev. 2007;26:141–52. doi:10.1007/s10555-007-9048-0.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5:309–19. doi:10.1517/17425247.5.3.309.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamada A, Taniguchi Y, Kawano K, Honda T, Hattori Y, Maitani Y. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res. 2008;14:8161–8. doi:10.1158/1078-0432.CCR-08-0159.CrossRefPubMedGoogle Scholar
  11. 11.
    Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly (lactide)-vitamin E TPGS nanoparticles. Biomaterials. 2008;29:2663–72. doi:10.1016/j.biomaterials.2008.02.020.CrossRefPubMedGoogle Scholar
  12. 12.
    Pan J, Feng SS. Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs) - loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30:1176–83. doi:10.1016/j.biomaterials.2008.10.039.CrossRefPubMedGoogle Scholar
  13. 13.
    Okarvi SM, Jammaz IA. Preparation and in vitro and in vivo evaluation of technetium-99m-labeled folate and methotrexate conjugates as tumor imaging agents. Cancer Biother Radiopharm. 2006;21:49–60. doi:10.1089/cbr.2006.21.49.CrossRefPubMedGoogle Scholar
  14. 14.
    Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 2005;94:2135–46. doi:10.1002/jps.20457.CrossRefPubMedGoogle Scholar
  15. 15.
    Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc Natl Acad Sci (USA). 1991;88:5572–6. PMCID: PMC51919.CrossRefGoogle Scholar
  16. 16.
    Müller C, Schubiger PA, Schibli R. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol. 2007;34:595–601. doi:10.1016/j.nucmedbio.2007.05.011.CrossRefPubMedGoogle Scholar
  17. 17.
    Sega EI, Low PS. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008;27:655–64. doi:10.1007/s10555-008-9155-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen WT, Mahmood U, Weissleder R, Tung CH. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther. 2005;7:310–7. doi:10.1186/ar1483.CrossRefGoogle Scholar
  19. 19.
    Reddy JA, Westrick E, Santhapuram HKR, Howard SJ, Miller ML, Vetzel M, et al. Folate receptor-specific antitumor activity of EC131, a folate-maytansinoid conjugate. Cancer Res. 2007;67:6376–82. doi:10.1158/0008-5472.CAN-06-3894.CrossRefPubMedGoogle Scholar
  20. 20.
    Kennedy MD, Jallad KN, Lu J, Low PS, Dor BA. Evaluation of Folate Conjugate Uptake and Transport by the Choroid Plexus of Mice. Pharmaceut Res. 2003;20:714–9. doi:10.1023/A:1023421232689.CrossRefGoogle Scholar
  21. 21.
    Leamon CP, Fei Y, Hari KS, Fan MJ, Vlahov IR. Properties Influencing the Relative Binding Affinity of Pteroate Derivatives and Drug Conjugates Thereof to the Folate Receptor. Pharmaceut Res. 2009;26:1315–23. doi:10.1007/s11095-009-9840-3.CrossRefGoogle Scholar
  22. 22.
    Low PS, Kularatue SA. Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009;13:256–62. doi:10.1016/j.cbpa.2009.03.022.CrossRefPubMedGoogle Scholar
  23. 23.
    Khandare J, Minko T. Polymer-drug conjugates: Progress in polymeric prodrugs. Prog Polym Sci. 2006;31:359–97. doi:10.1016/j.progpolymsci.2005.09.004.CrossRefGoogle Scholar
  24. 24.
    Chen HY, Zhang J, Qian ZY, Liu F, Chen XY, Gu YQ. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel. Nanotechnology. 2008;19:185707–16. doi:10.1088/0957-4484/19/18/185707.CrossRefGoogle Scholar
  25. 25.
    Chearuil FN, Corrigan OI. Thermosensitivity and release from poly N-isopropylacrylamide-polylactide copolymers. Int J Pharm. 2009;366:21–30. doi:10.1016/j.ijpharm.2008.08.036.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng N, Liu WG, Cao ZQ, Ji WH, Liang DC, Guo G, et al. A study of thermoresponsive poly(N-isopropylacrylamide)/polyarginine bioconjugate non-viral transgene vectors. Biomaterials. 2006;27:4984–92. doi:10.1016/j.biomaterials.2006.05.017.CrossRefPubMedGoogle Scholar
  27. 27.
    Mao ZW, Ma L, Yan J, Yan M, Gao CY, Shen JC. The gene transfection efficiency of thermoresponsive N, N, N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer. Biomaterials. 2007;28:4488–500. doi:10.1016/j.biomaterials.2007.06.033.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou YM, Ishikawa A, Okahashi R, Uchida K, Nemoto Y, Nakayama M, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control release. 2007;123:239–46. doi:10.1016/j.jconrel.2007.08.026.CrossRefPubMedGoogle Scholar
  29. 29.
    Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1137–52. doi:10.1016/j.addr.2008.03.008.CrossRefPubMedGoogle Scholar
  30. 30.
    Gu JX, Xia F, Wu Y, Qu XZ, Yang ZZ, Jiang L. Programmable delivery of hydrophilic drug using dually responsive hydrogel cages. J Control Release. 2007;117:396–402. doi:10.1016/j.jconrel.2006.11.029.CrossRefPubMedGoogle Scholar
  31. 31.
    Carmen AL, Angel C, Alexander SD, Natalia VG, Tatiana VB, Valerij YG. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release. 2005;102:629–41. doi:10.1016/j.jconrel.2004.10.021.CrossRefGoogle Scholar
  32. 32.
    Bikram M, Gobin AM, Whitmire RE, West JL. Temperature-sensitive hydrogels with SiO2-Aunanoshells for controlled drug delivery. J Control Release. 2007;123:219–27. doi:10.1016/j.jconrel.2007.08.013.CrossRefPubMedGoogle Scholar
  33. 33.
    Wei H, Zhang XZ, Cheng C, Cheng SX, Zhuo RX. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials. 2007;28:99–107. doi:10.1016/j.biomaterials.2006.08.030.CrossRefPubMedGoogle Scholar
  34. 34.
    Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev. 2002;54:613–30. doi:10.1016/S0169-409X(02)00041-8.CrossRefGoogle Scholar
  35. 35.
    Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release. 2001;74:213–24. doi:10.1016/S0168-3659(01)00319-4.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang J, Chen HY, Xu L, Gu YQ. The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J Control Release. 2008;131:34–40. doi:10.1016/j.jconrel.2008.07.019.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang J, Qian ZY, Gu YQ. In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel. Nanotechnology. 2009;20:325102–9. doi:10.1088/0957-4484/20/32/325102.CrossRefPubMedGoogle Scholar
  38. 38.
    Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, et al. Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med. 2004;10:1133–8. doi:10.1038/nm1101.CrossRefPubMedGoogle Scholar
  39. 39.
    Westphalen AC, Coakley FV, Qayyum A, Swanson M, Simko JP, Lu Y, et al. Peripheral zone prostate cancer: accuracy of different interpretative approaches with MR and MR spectroscopic imaging. Radiology. 2008;246:177–84. doi:10.1148/radiol.2453062042.CrossRefPubMedGoogle Scholar
  40. 40.
    Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with proteaseactivated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8. PMID: 10207887.CrossRefPubMedGoogle Scholar
  41. 41.
    Mahmood U, Tung CH, Bogdanov A, Weissleder R. Near-infrared optical imaging of protease activity for tumor detection. Radiology. 1999;213:866–70. PMID: 10580968.PubMedGoogle Scholar
  42. 42.
    Destito G, Yeh R, Rae CS, Finn MG, Manchester M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol. 2007;14:1152–62. doi:10.1016/j.chembiol.2007.08.015.CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng C, Hua W, Shi BX, Cheng H, Cao L, Gu ZW, et al. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials. 2008;29:497–505. doi:10.1016/j.biomaterials.2007.10.004.CrossRefPubMedGoogle Scholar
  44. 44.
    Wei H, Zhang XZ, Cheng H, Chen WQ, Cheng SX, Zhuo RX. Self-assembled thermo- and pH responsive micelles of poly(10-undecenoic acid-b-N-isopropylacrylamide) for drug delivery. J Control Release. 2006;116:266–74. doi:10.1016/j.jconrel.2006.08.018.CrossRefPubMedGoogle Scholar
  45. 45.
    Huang G, Gao J, Hu Z, John JVS, Ponder BC, Moro D. Controlled drug release from hydrogel nanoparticle networks. J Control Release. 2004;94:303–11. doi:10.1016/j.jconrel.2003.10.007.CrossRefPubMedGoogle Scholar
  46. 46.
    Xia XH, Hu ZB, Marquez M. Physically bonded nanoparticle networks: a novel drug delivery system. J Control Release. 2005;130:21–30. doi:10.1016/j.jconrel.2004.11.016.CrossRefGoogle Scholar
  47. 47.
    Leobandung W, Ichikawa H, Fukumori Y, Peppas NA. Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropylacrylamide. J Control Release. 2002;80:357–63. doi:10.1016/S0168-3659(02)00028-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Geddes CD, Cao H, Lakowicz JR. Enhanced photostability of ICG in close proximity to gold colloids. Spectrochim Acta A. 2003;59:2611–7. doi:10.1016/S1386-1425(03)00015-5.CrossRefGoogle Scholar
  49. 49.
    Cao YX, Zhang C, Shen WB, Cheng ZH, Yu LL, Ping QN. Poly(N-isopropylacrylamide)—chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Conrtol Release. 2007;120:186–94. doi:10.1016/j.jconrel.2007.05.009.CrossRefGoogle Scholar
  50. 50.
    Turk M, Dincer S, Yulug IG, Piskin E. In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J Control Release. 2004;96:325–40. doi:10.1016/j.jconrel.2004.01.013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Zhang
    • 1
  • Dawei Deng
    • 1
  • Zhiyu Qian
    • 2
  • Fei Liu
    • 1
  • Xinyang Chen
    • 1
  • Lianxiao An
    • 1
  • Yueqing Gu
    • 1
  1. 1.Department of Biomedical Engineering, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Biomedical Engineering, School of AutomationNanjing University of Aeronautics and AstronauticssNanjingPeople’s Republic of China

Personalised recommendations