Advertisement

Pharmaceutical Research

, Volume 26, Issue 6, pp 1289–1302 | Cite as

The Science of USP 1 and 2 Dissolution: Present Challenges and Future Relevance

  • Vivian GrayEmail author
  • Gregg Kelly
  • Min Xia
  • Chris Butler
  • Saji Thomas
  • Stephen Mayock
Expert Review

Abstract

Since its inception, the dissolution test has come under increasing levels of scrutiny regarding its relevance, especially to the correlation of results to levels of drug in blood. The technique is discussed, limited to solid oral dosage forms, beginning with the scientific origins of the dissolution test, followed by a discussion of the roles of dissolution in product development, consistent batch manufacture (QC release), and stability testing. The ultimate role of dissolution testing, “to have the results correlated to in vivo results or in vivo in vitro correlation,” is reviewed. The recent debate on mechanical calibration versus performance testing using USP calibrator tablets is presented, followed by a discussion of variability and hydrodynamics of USP Apparatus 1 and Apparatus 2. Finally, the future of dissolution testing is discussed in terms of new initiatives in the industry such as quality by design (QbD), process analytical technology (PAT), and design of experiments (DOE).

KEY WORDS

biorelevant methods dissolution in vitroin vivo correlation quality by design variability 

References

  1. 1.
    United States Pharmacopeia and National Formulary USP 29-NF 24. The United States Pharmacopeial Convention, Inc., Rockville, MD, 2007.Google Scholar
  2. 2.
    A. S. Hussain. Quality by design and risk based regulatory scrutiny: connecting the dots. Presentation at AAPS 39th Annual Pharmaceutical Technologies Conference at Arden House, Harriman, NY, Jan. 25–30 (2004).Google Scholar
  3. 3.
    L. Buhse. Measuring and Managing Method Variability. CDER Advisory Committee for Pharmaceutical Science, October 25, 2005, Rockville, MD, 1:184–219 (2005).Google Scholar
  4. 4.
    S. A. Qureshi. A new crescent-shaped spindle for drug dissolution testing-but why a new spindle? Dissolution Technol. 11:13–18 (2004).Google Scholar
  5. 5.
    F. J. Muzzio and P. Armenante. Action plan for the development of scientifically based bioavailability and dissolution testing systems. Presented at Drug Dissolution and Release Research Program Meeting, Nov. 17, 2005, Piscataway, NJ (Rutgers Univ.), pp. 1–10.Google Scholar
  6. 6.
    W. Swichtenberg. Dissolution Testing in the 21st Century, Hot Topic minutes. AAPS National Meeting, San Antonio, TX, Nov.1, 2006. Comments attributed to Ajaz Hussain. http://www.pharmamanufacturing.com/articles/2006/213.html (accessed 11/25/2008).
  7. 7.
    H. Zhang, and L. Yu. Dissolution testing for solid oral drug products: Theoretical considerations. J. Am. Pharm. Rev. 7:26–31 (2004).Google Scholar
  8. 8.
    J. Woodcock. The concept of pharmaceutical quality. J. Am. Pharm. Rev. 7:10–15 (2004).Google Scholar
  9. 9.
    J. M. Clarke, L. E. Ramsay, J. R. Shelton, M. J. Tidd, S. Murray, and R. F. Palmer. Factors influencing comparative bioavailability y of spironolactone tablets. J. Pharm. Sci. 66:1429–1432 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Gao, B. D. Rush, W. P. Pfund, T. Huang, J. M. Baauer, W. Morozowich, M. S. Kuo, and M. J. Hageman. Development of a supersaturatable SEDDS (S-SEDDS) formulation of Paclitaxel with improved oral bioavailability. J. Pharm. Sci. 92:2386–2398 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Kukura, J. L. Baxter, and F. J. Muzzio. Shear distribution and variability in the USP Apparatus 2 turbulent conditions. Intl. J. Pharm. 279:9–17 (2004).CrossRefGoogle Scholar
  12. 12.
    A. M. Healy, L. G. McCarthy, K. M. Gallagher, and O. I. Corrigan. Sensitivity of dissolution rate to location in the paddle dissolution apparatus. J. Pharm. Pharmacol. 54:441–444 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Buhse. Dissolution apparatus qualification. Presentation at Challenges for Dissolution Testing for the 21st Century, May 3, 2006, Arlington, VA.Google Scholar
  14. 14.
    B. Crist, and D. Spisak. evaluation of the induced variance of physical parameters on the calibrated USP dissolution apparatus 1 and 2. Dissolution Technol. 12:28–31 (2005).Google Scholar
  15. 15.
    P. Scott. Geometric irregularities common to the dissolution vessel. Dissolution Technol. 12:18–21 (2005).Google Scholar
  16. 16.
    J. Burmicz. Observations of systemic errors in calibrator tablet testing. Dissolution Technol. 12:33–34 (2005).Google Scholar
  17. 17.
    T. Foster, and W. Brown. USP dissolution calibrators: Re-examination and appraisal. Dissolution Technol. 12:6–8 (2005).Google Scholar
  18. 18.
    A. S. Achanta, V. A. Gray, T. L. Cecil, and L. T. Grady. Evaluation of the performance of prednisone and salicylic acid USP dissolution calibrators. Drug Dev. Ind. Pharm. 21:1171–1182 (1995).CrossRefGoogle Scholar
  19. 19.
    V. Gray, M. Barot, P. Bhattacharyya, J. Burmicz, B. Crist, T. Foster, R. Hanson, H. Lam, L. Leeson, J. Mauger, T. Moore, W. Mueller, M. Oates, J. L. Raton, and W. Brown. Activities of the USP Project Team on dissolution calibration. Dissolution Technol. 12:35–36 (2005).Google Scholar
  20. 20.
    T. Mirza, Y. Joshi, Q. Liu, and R. Vivilecchia. Evaluation of dissolution hydrodynamics in the USP, Peak™ and flat-bottom vessels using different solubility drugs. Dissolution Technol. 12:11–16 (2005).Google Scholar
  21. 21.
    J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: Immediate release dosage forms. Pharm. Res. 15:11–22 (1998).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Khan, and D. Rooke. Effect of disintegrant type upon the relationship between compressional pressure and dissolution efficiency. J. Pharm. Pharmacol. 28:633–636 (1976).PubMedGoogle Scholar
  23. 23.
    G. Levy, J. M. Antkowiak, J. A. Procknall, and D. C. White. J. Pharm. Sci. 52:1047–1051 (1963).PubMedCrossRefGoogle Scholar
  24. 24.
    Z. Chowhan, and L. Palagyi. Hardness increase induced by partial moisture loss in compressed tablets and its effect on in vitro dissolution. J. Pharm. Sci. 67:1385–1389 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Urdinola, V. Gray, and L. Grady. Effects of packaging and storage on the dissolution of model prednisone tablets. Am. J. Hosp. Pharm. 38:1322–1327 (1981).Google Scholar
  26. 26.
    Z. Chowhan, and L. Chi. Drug–excipient interactions resulting from powder mixing IV: Role of lubricants and their effect on in vitro dissolution. J. Pharm. Sci. 75:542–545 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Sunada, I. Shinohara, A. Otsuka, and Y. Yonezawa. Changes of surface area in the dissolution process of crystalline substances. II. Dissolution and simulation curves for mixed systems of sieved particles. Chem. Pharm. Bull. 37:467–470 (1989).Google Scholar
  28. 28.
    Z. Chowhan. Factors affecting dissolution of drugs and their stability upon aging in solid dosage forms. Pharm. Technol. 18:60–73 (1994).Google Scholar
  29. 29.
    J. Babu, and J. Pandit. Effect of aging on the dissolution stability of glibenclamide b-cyclodextrin complex. Drug Dev. Ind. Pharm. 25:1215–1219 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Bartolomei, P. Bertocchi, M. C. Ramusino, N. Santucci, and L. Valvo. Physico-chemical characterization of the modifications I and II of (R, S) propranolol hydrochloride: Solubility and dissolution studies. J. Pharm. Biomed. Anal. 21:299–309 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    N. Sarisuta, T. Thamsakdakorn, and S. Jateleela. Effects of temperature and humidity on the physical properties of piroxicam tablets. Pharm. Technol. 23:66–80 (1999).Google Scholar
  32. 32.
    B. Rohrs, T. Thamann, P. Gao, D. Stelzer, M. Bergren, and R. Chao. Tablet dissolution affected by a moisture mediated solid-state interaction between drug and disintegrant. Pharm. Res. 16:1850–1856 (1999).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Spireas, T. Wang, and R. Grover. Effects of Powder substrate on the dissolution properties of methyclothiazide liquisolid compacts. Drug Dev. Ind. Pharm. 25:163–168 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Adebayo, and O. Itiola. Effects of breadfruit and cocoyam starch mucilage binders on disintegration and dissolution behaviors of paracetamol tablet formulations. Pharm. Technol. 25:78–90 (2003).Google Scholar
  35. 35.
    J. Nerurkar, H. Jun, J. Price, and M. Park. Controlled-release matrix tablets of ibuprofen using cellulose ethers and carrageenans: Effect of formulation factors on dissolution rates. Eur. J. Pharm. Biopharm. 61:56–68 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Kranz, and T. Wagner. Effects of formulation and process variables on the release of a weakly basic drug from single unit extended release formulations. Eur. J. Pharm. Biopharm. 62:70–76 (2006).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Furlanetto, M. Cirri, F. Maestrelli, G. Corti, and P. Mura. Study of formulation variables influencing the drug release rate from matrix tablets by experimental design. Eur. J. Pharm. Biopharm. 62:77–84 (2006).PubMedCrossRefGoogle Scholar
  38. 38.
    D. G. Alvarez. Comparison of acrylic and cellulose-based matrix formers for sustained drug release. Drug Deliv. Technol. 6:61–65 (2006).Google Scholar
  39. 39.
    A. Dokoumetzidis, and P. Macheras. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int. J. Pharm. 321:1–11 (2006).PubMedCrossRefGoogle Scholar
  40. 40.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Dissolution testing of immediate release dosage forms: Guidance for industry. US Government Printing Office, Rockville, MD, 1997.Google Scholar
  41. 41.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Q1A(R2) stability testing of new drug substances and products: Guidance for industry. US Government Printing Office, Rockville, MD, 2003.Google Scholar
  42. 42.
    M. A. Khan, A. A. Karnachi, V. Agarwal, S. R. Vaithiyalingam, S. Nazzal, and I. K. Reddy. Stability characterization of controlled release coprecipitates and solid dispersions. J. Control. Release 63:1–6 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Fitzpatrick, J. F. McCabe, C. R. Petts, and S. W. Booth. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int. J. Pharm. 246:143–151 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    N. V. Phadnis, and R. Suryanarayanan. Polymorphism in anhydrous theophylline—Implications on the dissolution rate of theophylline tablets. J. Pharm. Sci. 86:1256–1263 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Marchais, G. Cayzeele, J. Y. Legendre, M. Skiba, and P. Arnaud. Cross-linking of hard gelatin carbamazepine capsules: Effect of dissolution conditions on in vitro drug release. Eur. J. Pharm. Sci. 19:129–132 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. SUPAC-IR: Immediate-release solid oral dosage forms: Scale-up and post-approval changes: Chemistry, manufacturing and controls, in vitro dissolution testing, and in vivo bioequivalence documentation: Guidance for industry. US Government Printing Office, Rockville, MD, 1995.Google Scholar
  47. 47.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. SUPAC-MR: Modified release solid oral dosage forms: Scale-up and post-approval changes: Chemistry, manufacturing, and controls, in vitro dissolution testing and in vivo bioequivalence documentation: Guidance for industry. US Government Printing Office, Rockville, MD, 1997.Google Scholar
  48. 48.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system: Guidance for industry. US Government Printing Office, Rockville, MD, 2000.Google Scholar
  49. 49.
    International Conference on Harmonization. Guidance on Q6A specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical substances, Federal Register 65(251), 83041–83063 (2000).Google Scholar
  50. 50.
    T. O’Hara, A. Dunne, J. Butler, and J. Devane. A review of methods used to compare dissolution profile data. Pharm. Sci. Technol. Today. 1:214–223 (1998).CrossRefGoogle Scholar
  51. 51.
    J. W. Moore, and H. H. Flanner. Mathematical comparison of dissolution profiles. Pharm. Technol. 20:64–74 (1996).Google Scholar
  52. 52.
    V. P. Shah, Y. Tsong, P. Sathe, and J.-P. Liu. In vitro dissolution profile comparison—Statistics and analysis of the similarity factor, f 2. Pharm. Res. 15(6):889–896 (1998).PubMedCrossRefGoogle Scholar
  53. 53.
    M. Ma, R. Lin, and J. Liu. Statistical evaluations of dissolution similarity. Stat. Sin. 9:1011–1027 (1999).Google Scholar
  54. 54.
    P. Costa. An alternative method to the evaluation of similarity factor in dissolution testing. Int. J. Pharm. 220:77–83 (2001).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Vertzoni, M. Symillides, A. Iliadis, E. Nicolaides, and C. Reppas. Comparison of simulated cumulative drug versus time data sets with indices. Eur. J. Pharm. Biopharm. 56:421–428 (2003).PubMedCrossRefGoogle Scholar
  56. 56.
    P. Sathe, Y. Tsong, and V. P. Shah. In vitro dissolution profile comparison—Statistics and analysis, model dependent approach. Pharm. Res. 13(2):1799–1803 (1996).PubMedCrossRefGoogle Scholar
  57. 57.
    J. E. Polli, S. Rekhi, and V. P. Shah. Methods to compare dissolution profiles. Drug. Info. J. 30:1113–1120 (1996).Google Scholar
  58. 58.
    Y. Tsong, T. Hammerstrom, and J. Chen. Multipoint dissolution specification and acceptance sampling rule based on profile modeling and principal component analysis. J. Biopharm. Stat. 7(3):423–439 (1997).PubMedCrossRefGoogle Scholar
  59. 59.
    H. J. Ju, and S.-J. Liaw. On the assessment of similarity of drug dissolution profiles—A simulation study. Drug Info. J. 31:1273–1289 (1997).Google Scholar
  60. 60.
    H. Saranadasa. Defining similarity of dissolution profiles through Hotelling’s T 2 statistic. Pharm. Technol. February, pp. 46–54 (2001).Google Scholar
  61. 61.
    H. Saranadasa, and K. Krishnamoorthy. A multivariate test for similarity of two dissolution profiles. J. Biopharm. Stat. 15:256–278 (2005).CrossRefGoogle Scholar
  62. 62.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations: Guidance for industry. US Government Printing Office, Rockville, MD, 1997.Google Scholar
  63. 63.
    G. L. Amidon, H. L. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutical drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    L. X. Yu, G. L. Amidon, J. E. Polli, H. Zhao, M. U. Mehta, D. P. Conner, V. P. Shah, L. J. Lesko, M. L. Chen, V. H. L. Lee, and A. S. Hussain. Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm. Res. 19:921–925 (2002).PubMedCrossRefGoogle Scholar
  65. 65.
    J. E. Polli, G. S. Rekhi, L. L. Augsburger, and V. P. Shah. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J. Pharm. Sci. 86:690–700 (1997).PubMedCrossRefGoogle Scholar
  66. 66.
    E. Rinaki, A. Dokoumetzidis, G. Valsami, and P. Macheras. Identification of biowaivers among class II drugs: Theoretical justification and practical examples. Pharm. Res. 21:1567–1572 (2004).PubMedCrossRefGoogle Scholar
  67. 67.
    USP Subcommittee on Biopharmaceutics. In vitro/in vivo correlation for extended-release oral dosage forms. Pharm. Forum 14(4):4160–4161 (1988).Google Scholar
  68. 68.
    J. L. Cohen, B. B. Hubert, L. J. Leeson, C. T. Rhodes, J. R. Robinson, T. J. Roseman, and E. Shefter. The development of USP dissolution and drug release standards. Pharm. Res. 7:983–987 (1990).PubMedCrossRefGoogle Scholar
  69. 69.
    Pharmacopeial Forum. In vitro and in vivo evaluation of dosage forms. Pharm. Forum. 19(3):5366–5379 (1993).Google Scholar
  70. 70.
    J. P. Skelly, G. L. Amidon, W. H. Barr, L. Z. Benet, J. E. Carter, J. R. Robinson, V. P. Shah, and A. Yacobi. Report of Workshop on In vitro and In Vivo Testing and Correlation for Oral Controlled/Modified Release Dosage Forms. J. Pharm. Sci. 79:849–854 (1990).CrossRefGoogle Scholar
  71. 71.
    United States Pharmacopeia and National Formulary USP 23-NF 18. The United States Pharmacopeial Convention, Inc., Rockville, MD, 1994.Google Scholar
  72. 72.
    J. Emami. In vitroIn vivo correlation: From theory to applications. J. Pharm. Pharmaceut. Sci. 9:169–189 (2006). http://www.ualberta.ca/~csps/JPPS9_2/Jaber_Emami/MS_190.htm (accessed 11/25/2008).
  73. 73.
    W. R. Gillespie. Convolution-based approaches for in vitroin vivo correlation modeling. In D. Young, J. Devane, and J. Butler (eds.), In Vitro In Vivo Correlations, Vol. 423, Plenum, New York, 1997, pp. 53–65.Google Scholar
  74. 74.
    J.-M. Cardot, and E. Beyssac. In vitro/in vivo correlations: Scientific implications and standardization. Eur. J. Drug Metab. Pharmacokinet. 18:113–120 (1993).PubMedGoogle Scholar
  75. 75.
    N. Sirisuth, and N. D. Eddington. In vitroin vivo correlation, definitions and regulatory guidance. Int. J. Generic Drugs. Part 2:1–11 (2002).Google Scholar
  76. 76.
    D. Young, J. G. Devane, and J. Butler (Eds.), In Vitro In Vivo Correlations, Vol. 423, Plenum, New York, 1997.Google Scholar
  77. 77.
    K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 6:547–558 (1978).PubMedCrossRefGoogle Scholar
  78. 78.
    J. Drewe, and P. Guitard. In vitro–in vivo correlation for modified-release formulations. J. Pharm. Sci. 82(2):132–137 (1993).PubMedCrossRefGoogle Scholar
  79. 79.
    In vitro and in vivo evaluations of dosage forms <1088>. In United States Pharmacopeia and National Formulary USP 30-NF 25. The United States Pharmacopeial Convention, Inc., Rockville, MD,.2008.Google Scholar
  80. 80.
    M. M. Akbor, R. Sultana, A. Ullah, M. A. K. Azad, A. M. Latif, and A. Hasnat. In vitro in vivo correlation (IVIVC) of immediate release (IR). J. Pharm. Sci. 6(2):113–119 (2007).Google Scholar
  81. 81.
    E. Jantratid, S. Prakongpan, G. L. Amidon, and J. B. Dressman. Feasibility of biowaiver extension to biopharmaceutics classification system class III drug products cimetidine. Clin. Pharmacokinet. 45(4):385–399 (2006).PubMedCrossRefGoogle Scholar
  82. 82.
    N. Sirisuth, L. L. Augsburger, and N. D. Eddington. Development and validation of a non-linear IVIVC model for a diltiazem extended release formulation. Biopharm. Drug Disp. 23:1–8 (2002).CrossRefGoogle Scholar
  83. 83.
    S. Takka, A. Sakr, and A. Goldberg. Development and validation of an in vitro–in vivo correlation for buspirone hydrochloride extended release tablets. J. Control. Release 88:147–157 (2003).PubMedCrossRefGoogle Scholar
  84. 84.
    D. Sandeep, Y. H. Qiu, S. Emil, G. L. Cao, and G. G. Richard. Once-a-day extended-release dosage form of divalproex sodium III: Development and validation of a level A in vitroin vivo correlation (IVIVC). J. Pharm Sci. 94(9):1949–1956 (2005).CrossRefGoogle Scholar
  85. 85.
    G. Balan, P. Timmins, D. S. Greene, and P. H. Marathe. In vitro–in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J. Pharm. Sci. 90(8):1176–1185 (2001).PubMedCrossRefGoogle Scholar
  86. 86.
    B.-M. Lue, F. S. Nielsen, T. Magnussen, H. M. Schou, K. Kristensen, L. Jacobsen, and A. Mullertz. Using biorelevant dissolution to obtain IVIVC of solid dosage forms containing a poorly soluble model compound. Eur. J. Pharm. Biopharm. 69(2):648–657 (2008).PubMedCrossRefGoogle Scholar
  87. 87.
    P. Buch, P. Langguth, M. Kataoka, S. Yamashita. IVIVC in oral absorption for fenofibrate immediate release tablets using a dissolution/permeation system. J. Pharm. Sci. Published online in Wiley InterScience (www.interscience.wiley.com). doi:10.1002/jps.21576.
  88. 88.
    J.-M. Cardot, E. Beyssac, and M. Alric. In vitro–in vivo correlation: Importance of dissolution in IVIVC. Dissolution Technol. 14(1):15–19 (2007).Google Scholar
  89. 89.
    S. F. Li, A. E. Royce, and A.T. M. Serajuddin. In vitro–in vivo correlation in dosage form development: Case studies book biopharmaceutics applications in drug development. Springer, US, pp. 359–382. ISBN 978-0-387-72378-5 (print), 978-0-387-72379-2 (online).Google Scholar
  90. 90.
    P. Veng-Pedersen, J. V. S. Gobburu, M. C. Meyer, and A. B. Straughn. Carbamazepine level A in vivoin vitro correlation (IVIVC): A scaled convolution based predictive approach. Biopharm. Drug Dispos. 21(1):1–6 (2000).PubMedCrossRefGoogle Scholar
  91. 91.
    H. Potthast, J. B. Dressman, H. E. Junginger, K. K. Midha, H. Oeser, and V. P. Shah. Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen. J. Pharm. Sci. 94(10):2121–2131 (2005) (October).PubMedCrossRefGoogle Scholar
  92. 92.
    D. Young, D. Chilukuri, R. Becker, S. Bigora, C. Farrell, and T. Shepard. Approaches to developing a level-A IVIVC for injectable dosage forms. AAPS PharmSci. 4(4):M1357 (2002).Google Scholar
  93. 93.
    N. Chidambaram, and D. J.. Burgess. A novel in vitro release method for submicron-sized dispersed system. AAPS PharmSci. 1(3):32–40 (1999).CrossRefGoogle Scholar
  94. 94.
    J. E. Polli. IVIVR versus IVIVC. Dissolution Technol. 7(3):6–9 (2000).Google Scholar
  95. 95.
    J. E. Polli, and M. J. Ginski. Human drug absorption kinetics and comparison to Caco-2 monolayer permeabilities. Pharm. Res. 15:47–52 (1998).PubMedCrossRefGoogle Scholar
  96. 96.
    T. Zoeller, and S. Klein. Simplified biorelevant media for screening dissolution performance of poorly soluble drugs. Dissolution Technol. 14:8–13 (2007).Google Scholar
  97. 97.
    Q. Wang, and V. Gray. HPLC in Dissolution Testing. In S. Ahuja, and M. Dong (eds.), Handbook of Pharmaceutical Analysis by HPLC, Vol. 6 (Separation Science and Technology), Elsevier Academic, London, UK, 2005.Google Scholar
  98. 98.
    R. Hanson, S. Vangani, A. Salt, J. Burmicz, S. Thomas, J. Seely, J. Kraemer, J. Kretz, and B. Crist. Commentaries on mechanical versus chemical calibration. Dissolution Technol. 14(2):6–18 (2007).Google Scholar
  99. 99.
    O. S. Degenhardt, B. Waters, A. Rebelo-Cameiro, A. Meyer, H. Brunner, and N. P. Toltl. Comparison of the effectiveness of various deaeration techniques. Dissolution Technol. 11(1):6–11 (2004).Google Scholar
  100. 100.
    S. Vangani, T. Flick, G. Tamayo, R. Chiu, and N. Cauchon. Vibration measurements on dissolution systems and effects on dissolution of predisone tablets RS. Dissolution Technol. 14(1):6–14 (2007).Google Scholar
  101. 101.
    M. Tanaka, H. Fujiwara, and M. Fujiwara. Effect of the irregular inner shape of a glass vessel on prednisone dissolution results. Dissolution Technol. 12(4):15–19 (2005).Google Scholar
  102. 102.
    J. Eaton, G. Deng, W. W. Hauck, W. E. Brown, R. G. Manning, and S. Wahab. Perturbation study of dissolution apparatus variables—A design of experiment approach. Dissolution Technol. 14:20–26 (2007).Google Scholar
  103. 103.
    N. Kaniwa. Typical variability in dissolution testing and its qualification. Pharm. Tech. Jpn. 18:105–111 (2002).Google Scholar
  104. 104.
    S. A. Qureshi, and I. J. McGilveray. Typical variability in drug dissolution testing: study USP and FDA calibrator tablets and a marketed drug (glibenclamide) product. Eur. J. Pharm. Sci. 7:249–258 (1999).PubMedCrossRefGoogle Scholar
  105. 105.
    D. C. Cox, C. E. Wells, W. B. Furnam, T. S. Savage, and A. C. King. Systematic error associated with apparatus 2 of the USP dissolution test. USBN 0-12-088547-6II: Effects of deviations in vessel curvature from that of a sphere. J. Pharm. Sci. 71:395–399 (1982).PubMedCrossRefGoogle Scholar
  106. 106.
    Y. Wu, D. O. Kildsig, and E. S. Ghaly. Effect of hydrodynamic environment on tablets dissolution rate. Pharm. Dev. Technol. 9:25–37 (2004).PubMedCrossRefGoogle Scholar
  107. 107.
    J. L. Baxter, J. Kukura, and F. J. Muzzio. Shear-induced variability in the United States Pharmacopeia Apparatus 2: Modifications to the existing system. AAPS J. 7(4):E857–E864 (2006).PubMedCrossRefGoogle Scholar
  108. 108.
    D. D’Arcy. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics—Dissolution rate implications. Eur. J. Pharm. Sci. 27(2–3):259–267 (2005).PubMedGoogle Scholar
  109. 109.
    L. G. McCarthy, G. Bradley, J. C. Sexton, O. I. Corrigan, and A. M. Healy. Computational fluid dynamics modeling of the paddle dissolution apparatus: Agitation rate, mixing patterns, and fluid velocities. AAPS PharmSciTech. 5(2):Article 31 (2004).Google Scholar
  110. 110.
    L. G. McCarthy, C. Kosiol, A. M. Healy, G. Bradley, J. C. Sexton, and O. I. Corrigan. Simulating the hydrodynamic conditions in the United States Pharmacopeia paddle dissolution apparatus. AAPS PharmSciTech. 4(2):Article 22 (2003).Google Scholar
  111. 111.
    R. A. Soltero, J. M. Hoover, T. F. Jones, and M. Standish. Effects of sinker shapes on dissolution profiles. J. Pharm. Sci. 78:35–39 (1989).PubMedCrossRefGoogle Scholar
  112. 112.
    S. A. Qureshi, and J. Shabnam. Cause of high variability in drug dissolution testing and its impact on setting tolerances. Eur. J. Pharm. Sci. 12:271–276 (2001).PubMedCrossRefGoogle Scholar
  113. 113.
    S. Diebold. Hydrodynamics and dissolution—Influence of hydrodynamics on dissolution rate of poorly soluble drugs. PhD Dissertation, University of Frankfurt, Shaker Verlag, Aachen, Germany.Google Scholar
  114. 114.
    C. Collins, and R. Nair. Comparative evaluation of mixing dynamics in USP Apparatus 2 using standard USP vessels and PEAK™ vessels. Dissolution Technol. 5(2):17–21 (1998).Google Scholar
  115. 115.
    A. H. Beckett, T. T. Quach, and G. S. Kurs. Improved hydrodynamics for USP Apparatus 2. Dissolution Technol. 3:7–10, 18 (1996).Google Scholar
  116. 116.
    S. A. Qureshi. Comparative impact of stirring and shearing in drug dissolution testing with USP paddle and crescent-shaped spindles. Dissolution Technol. 13:25–30 (2006).Google Scholar
  117. 117.
    M. S. F. Ross, and M. Rasis. Mega paddle—A recommendation to modify Apparatus 2 used in the USP general test for dissolution <711>. Pharm. Forum 24:214 (1998).Google Scholar
  118. 118.
    A. S. Hussain. Drug Release Specification: In Vivo Relevance. FDA Advisory Committee for Pharmaceutical Sciences, October 25, 2005.Google Scholar
  119. 119.
    M. A. Staples. The concept of quality by design. AAPS Workshop on Pharmaceutical Stability Testing to Support Global Markets, Sept. 10, 2007.Google Scholar
  120. 120.
    M. M. Nasr. Quality by design and its relevance to dissolution. AAPS Workshop on Challenges for Dissolution Testing for the 21st Century, Arlington, VA, May 1, 2006.Google Scholar
  121. 121.
    S. Furlanetto, F. Maestrelli, S. Orlandini, S. Pinzauti, and P. Mura. Optimization of dissolution test precision for a ketoprofen oral extended-release product. J. Pharm. Biomed. Anal. 32:159–165 (2003).PubMedCrossRefGoogle Scholar
  122. 122.
    C. Graffner, M. Sarkela, K. Gjellan, and G. Nork. Use of statistical experimental design in the further development of a discriminating in vitro release test for ethyl cellulose ER-coated spheres of remoxipride. Eur. J. Pharm. Sci. 4:73–83 (1996).CrossRefGoogle Scholar
  123. 123.
    C. Sanchez-Lafuente, S. Furlanetto, M. Fernandez-Arevalo, J. Alvarez-Fuentes, A. M. Rabasco, M. T. Faucci, S. Pinzauti, and P. Mura. Didanosine extended-release matrix tablets: Optimization of formulation variables using statistical experimental design. Int. J. Pharm. 237:107–118 (2002).PubMedCrossRefGoogle Scholar
  124. 124.
    M. A. Khan, S. V. Sastry, S. R. Vaithiyalingam, V. Agarwal, S. Nazzal, and I. K. Reddy. Captopril gastrointestinal therapeutic system coated with cellulose acetate pseudolatex: Evaluation of main effects of several formulation variables. Int. J. Pharm. 193:147–156 (2000).PubMedCrossRefGoogle Scholar
  125. 125.
    US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. PAT—A framework for innovative pharmaceutical development, manufacturing, and quality assurance: Guidance for industry. US Government Printing Office, Rockville, MD, 2007.Google Scholar
  126. 126.
    J. D. Kirsch, and J. K. Drennen. Determination of film-coated tablet parameters by near-infrared spectroscopy. J. Pharm. Biomed. Anal. 13:1273–1281 (1995).PubMedCrossRefGoogle Scholar
  127. 127.
    M. P. Freitas, A. Sabadin, L. M. Silva, F. M. Giannotti, D. A. do Couto, E. Tonhi, R. S. Medeiros, G. L. Coco, V. F. T. Russo, and J. A. Martins. Prediction of drug dissolution profiles from tablets using NIR diffuse reflectance spectroscopy: A rapid and nondestructive method. J. Pharm. Biomed. Anal. 39:17–21 (2005).PubMedCrossRefGoogle Scholar
  128. 128.
    M. Blanco, M. Alcalá, J. M. González, and E. Torras. A process analytical technology approach based on near infrared spectroscopy: Tablet hardness, content uniformity, and dissolution test measurements of intact tablets. J. Pharm. Sci. 95:2137–2144 (2007).CrossRefGoogle Scholar
  129. 129.
    J. A. Spencer, Z. Gao, T. Moore, L. F. Buhse, P. F. Taday, D. A. Newnham, Y. Shen, A. Portieri, and A. S. Hussain. Delayed release tablet dissolution related to coating thickness by terahertz pulsed image mapping. J. Pharm. Sci. 97:1543–1550 (2008).PubMedCrossRefGoogle Scholar
  130. 130.
    A. S. Hussain. Biopharmaceutics and drug product quality: Performance tests for drug products, a look into the future. USP Annual Scientific Meeting: The Science of Quality, Iselin, NJ, Sept. 26, 2004.Google Scholar
  131. 131.
    A. S. Hussain. Achieving and demonstrating “quality-by-design” with respect to drug release/dissolution performance for conventional or immediate release solid oral dosage forms. FDA Advisory Committee for Pharmaceutical Sciences meeting, October 25, 2005.Google Scholar
  132. 132.
    The dissolution procedure: Development and validation <1092>. In The United States Pharmacopeia USP 30, United States Pharmacopeial Convention, Inc., Rockville, MD, 2007.Google Scholar
  133. 133.
    L. D. Torbeck. Assay validation: Ruggedness and robustness with designed experiments. Pharm:Technol. 20:169–172 (1996).Google Scholar
  134. 134.
    P. A. Peters, and T. C. Paino. Robustness testing of an HPLC method using experimental design. Pharm. Technol., Anal. Valid. Suppl. 23:8–14 (1999).Google Scholar
  135. 135.
    W. J. Youden, and E. H. Steine. Statistical manual of the association of official analytical chemists. AOAC International, Arlington, VA, 1975.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vivian Gray
    • 1
    Email author
  • Gregg Kelly
    • 2
  • Min Xia
    • 3
  • Chris Butler
    • 4
  • Saji Thomas
    • 5
  • Stephen Mayock
    • 6
  1. 1.V. A. Gray Consulting, Inc.HockessinUSA
  2. 2.Analytical R & DPfizer Global R & DGrotonUSA
  3. 3.Analytical DevelopmentVertex PharmaceuticalsCambridgeUSA
  4. 4.Validation and CAPAOrtho Clinical DiagnosticsRochesterUSA
  5. 5.QC Lab OperationsPar PharmaceuticalSpring ValleyUSA
  6. 6.Analytical ServicesCatalent Pharma SolutionsSan DiegoUSA

Personalised recommendations