Pharmaceutical Research

, 26:746 | Cite as

Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option?

Expert Review

Abstract

Amidst the myriad of Drug Delivery Systems able to enhance delivery, absorption and intracellular uptake of a bioactive molecule while protecting it from deactivation, Carbon Nanotubes (CNTs) have emerged as a recent and promising option especially in cancer therapy. This is mainly due to their unique properties, which render them extremely versatile through the incorporation of several functional groups and targeting molecules at the same time, while their natural shape allows them to selectively penetrate across biological barriers in a non-invasive way. In this expert review we aim to evaluate whether this innovative material, once chemically-modified with suitable functionalizations, can be considered as a valuable system in comparison to the already existing nanodevices. This will include the estimation of the most recent advances in the field of nanotechnology, together with a cautious evaluation of potential risks and hazards associated with the extensive use of this fascinating, but still unknown, nanomaterial.

KEY WORDS

carbon nanotubes drug delivery systems functionalization nanotechnology toxicity 

Abbreviations

AmB

amphotericin B

BD

biodistribution

BNCT

boron capture neutron therapy

BSA

bovine serum albumin

CNTs

carbon nanotubes

DDS

drug delivery systems

DNA

deoxyribonucleic acid

DOX

doxorubicin

EDC

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide

EPO

erythropoietin

EPR

enhanced permeability and retention effect

FA

folic acid

f-CNTs

functionalized carbon nanotubes

FDA

Food and Drug Administration (USA)

HIV

human immunodeficiency virus

HMM

altretamine or hexamethylmelamine

IR

infrared spectroscopy

MPS

mononuclear phagocyte system

MTX

methotrexate

MWCNTs

multi-walled carbon nanotubes

NHS

N-hydroxysuccinimide

NIR

near-infrared

NMR

nuclear magnetic resonance

NPs

nanoparticles

pCNTs

pristine carbon nanotubes

PEG

polyethylene glycol

PK

pharmacokinetic

RBM

radial breathing mode

RNA

ribonucleic acid

SDS

sodium dodecyl sulfate

STIs

sexually transmitted infections

SWCNTs

single-walled carbon nanotubes

TEM

transmission electron microscopy

UV

ultraviolet spectroscopy

References

  1. 1.
    I. Ojima. Guided molecular missiles for tumor-targeting chemotherapy—case studies using the second-generation taxoids as warheads. Acc. Chem. Res. 41:108–119 (2008). doi:10.1021/ar700093f.PubMedGoogle Scholar
  2. 2.
    K. Y. Kim. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomed. 3:103–110 (2007).Google Scholar
  3. 3.
    T. Tanaka, P. Decuzzi, M. Cristofanilli, J. H. Sakamoto, E. Tasciotti, F. M. Robertson, and M. Ferrari. Nanotechnology for breast cancer therapy. Biomed. Microdevices. (2008). doi:10.1007/s10544-008-9209-0.
  4. 4.
    W. E. Bawarski, E. Chidlowsky, D. J. Bharali, and S. A. Mousa. Emerging nanopharmaceuticals. Nanomed. 4:273–282 (2008).Google Scholar
  5. 5.
    K. K. Jain. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 17:89–101 (2008). doi:10.1159/000112961.PubMedGoogle Scholar
  6. 6.
    R. P. Kulkarni. Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as ‘big science’. J. Biomed. Discov. Collab. 2:3 (2007). doi:10.1186/1747-5333-2-3.PubMedGoogle Scholar
  7. 7.
    D. Lu, M. G. Wientjes, Z. Lu, and J. L. Au. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 322:80–88 (2007). doi:10.1124/jpet.107.121632.PubMedGoogle Scholar
  8. 8.
    M. S. Arayne, and N. Sultana. Review: nanoparticles in drug delivery for the treatment of cancer. Pak J. Pharm. Sci. 19:258–268 (2006).PubMedGoogle Scholar
  9. 9.
    P. Couvreur, and C. Vauthier. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23:1417–1450 (2006). doi:10.1007/s11095-006-0284-8.PubMedGoogle Scholar
  10. 10.
    P. Grodzinski, M. Silver, and L. K. Molnar. Nanotechnology for cancer diagnostics: promises and challenges. Exp. Rev. Mol. Diagn. 6:307–318 (2006). doi:10.1586/14737159.6.3.307.Google Scholar
  11. 11.
    F. D. Dvorak, J. A. Nagy, J. T. Dvorak, and A. M. Dvorak. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133:95–109 (1998).Google Scholar
  12. 12.
    J. K. Vasir, M. K. Maram, and V. D. Labhasetwar. Nano-systems in drug targeting: opportunities and challenges. Curr. Nanosci. 1:47–67 (2005). doi:10.2174/1573413052953110.Google Scholar
  13. 13.
    A. Gabizon, H. Shmeeda, and Y. Barenholz. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42:419–436 (2003). doi:10.2165/00003088-200342050-00002.PubMedGoogle Scholar
  14. 14.
    D. W. Northfelt, D. W. F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol. 36:55–63 (1996).PubMedGoogle Scholar
  15. 15.
    M. J. Glantz, K. A. Jaeckle, M. C. Chamberlain, S. Phuphanich, L. Recht, L. J. Swinnen, B. Maria, S. LaFollette, G. B. Schumann, B. F. Cole, and S. B. Howell. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 5:3394–3402 (1999).PubMedGoogle Scholar
  16. 16.
    R. N. Davidson, L. Di Martino, L. Gradoni, R. Giacchino, R. Russo, G. B. Gaeta, R. Pempinello, S. Scott, F. Raimondi, A. Cascio et al. Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q. J. Med. 87:75–81 (1994).PubMedGoogle Scholar
  17. 17.
    S. Song, D. Liu, J. Peng, Y. Sun, Z. Li, J. R. Gu, and Y. Xu. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int. J. Pharm. 363:155–161 (2008). doi:10.1016/j.ijpharm.2008.07.012.PubMedGoogle Scholar
  18. 18.
    A. Gabizon, and F. Martin. Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumours. Drugs. 54(suppl 4):15–21 (1997).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Gabizon. Liposomal anthracyclines. Hematol. Oncol. Clin. North Am. 8:431–450 (1998).Google Scholar
  20. 20.
    D. Needham, G. Anyarambhatla, G. Kong, and M.W. Dewhirst. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 60:1197–1201 (2000).PubMedGoogle Scholar
  21. 21.
    A. Gabizon, R. Isacson, E. Libson, B. Kaufman, B. Uziely, R. Catane, C. G. Bendor, E. Rabello, Y. Cass, T. Peretz, A. Sulkes, R. Chisin, and Y. Barenholz. Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol. 33:779–786 (1994). doi:10.3109/02841869409083948.PubMedGoogle Scholar
  22. 22.
    K. B. Gordon, A. Tajuddin, J. Guitart, T. M. Kuzel, L. R. Eramo, and J. Vonroenn. Hand-foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer. 75:2169–2173 (2006). doi:10.1002/1097-0142(19950415)75:8<2169::AID-CNCR2820750822>3.0.CO;2-H.Google Scholar
  23. 23.
    O. Lyass, B. Uziely, R. Ben Yosef, D. Tzemach, N. I. Heshing, M. Lotem, G. Brufman, and A. Gabizon. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer. 89:1037–1047 (2000). doi:10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z.PubMedGoogle Scholar
  24. 24.
    I. J. Majors, A. Myc, T. Thomas, C. B. Menhta, and J. R. Jr Baker. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules. 7:572–579 (2006). doi:10.1021/bm0506142.Google Scholar
  25. 25.
    D. Luo, K. Haverstick, N. Belcheva, E. Han, and W. M. Saltzman. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromol. 35:3456–3462 (2002). doi:10.1021/ma0106346.Google Scholar
  26. 26.
    T. D. McCarthy, P. Karellas, S. A. Henderson, M. Giannis, D. F. O’Keefe, G. Heery, J. R. Paull, B. R. Matthews, and G. Holan. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm. 2:312–318 (2005). doi:10.1021/mp050023q.PubMedGoogle Scholar
  27. 27.
    M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. McRee, and N. Khazanovich. Self-assembled organic nanotubes based on a cyclic peptide. Nature. 366:324–327 (1993). doi:10.1038/366324a0.PubMedGoogle Scholar
  28. 28.
    N. Khazanovich, J. R. Granja, D. McRee, R. A. Milligan, and M. R Ghadiri. Nanoscale tubular ensembles with specific internal diameters. Design of self-assembled nanotube with a 13 Å pore. J. Am. Chem. Soc. 116:6011–6012 (1994). doi:10.1021/ja00092a079.Google Scholar
  29. 29.
    S. Fernadanez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, and M. R. Ghadiri. Antibacterial agents based on the cyclic D–L-α-peptide architecture. Nature. 412:452–455 (2001). doi:10.1038/35086601.Google Scholar
  30. 30.
    M. R. Ghadiri, J. R. Granja, and L. K. Buehler. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 369:301–304 (1994). doi:10.1038/369301a0.PubMedGoogle Scholar
  31. 31.
    K. Tanaka, N. Kitamura, and Y. Chujo. Properties of superparamagnetic iron oxide nanoparticles assembled on nucleic acids. Nucleic Acids Symp. Ser. (Oxf). 52:693–694 (2008). doi:10.1093/nass/nrn350.Google Scholar
  32. 32.
    C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A. S. Lubbe. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60:6641–6648 (2000).PubMedGoogle Scholar
  33. 33.
    T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials. 29:4012–4021 (2008). doi:10.1016/j.biomaterials.2008.07.004.PubMedGoogle Scholar
  34. 34.
    M. Babincov, V. Altanerov, C. Altaner, C. Bergemann, and P. Babinec. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans. Nanobioscience. 7:15–19 (2008). doi:10.1109/TNB.2008.2000145.PubMedGoogle Scholar
  35. 35.
    J. L. Arias, F. Linares-Molinero, V. Gallardo, and A. V. Delgado. Study of carbonyl iron/poly(butylcyanoacrylate) (core/shell) particles as anticancer drug delivery systems loading and release properties. Eur. J. Pharm. Sci. 233:252–261 (2008). doi:10.1016/j.ejps.2007.12.005.Google Scholar
  36. 36.
    S. Chen, X. Z. Zhang, S. X. Cheng, R. X. Zhuo, and Z. W. Gu. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules. 9(10):2578–2585 (2008).PubMedGoogle Scholar
  37. 37.
    J. F. Hillyer, and R. M. Albrecht. Correlative instrumental neutron activation analysis, light microscopy, transmission electron microscopy, and X-ray microanalysis for qualitative and quantitative detection of colloidal gold spheres in biological specimens. Microsc. Microanal. 4:481–490 (1998). doi:10.1017/S143192769898045X.PubMedGoogle Scholar
  38. 38.
    J. Petersen, and K. Bendtzen. Immunosuppressive actions of gold salts. Scand. J. Rheumatol. Suppl. 51:28–35 (1983). doi:10.3109/03009748309095340.PubMedGoogle Scholar
  39. 39.
    A. E. Finkelstein, D. T. Walz, V. Batista, M. Mizraji, F. Roisman, and A. Misher. Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann. Rheum. Dis. 35:251–257 (1976). doi:10.1136/ard.35.3.251.PubMedGoogle Scholar
  40. 40.
    P. L. Mottram. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol. Cell Biol. 81:350–353 (2003). doi:10.1046/j.1440-1711.2003.01184.x.PubMedGoogle Scholar
  41. 41.
    C. R. Patra, R. Bhattacharya, E. Wang, A. Katarya, J. S. Lau, S. Dutta, M. Murders, S. Wang, S. A. Buhrow, S. L. Safgren, M. J. Yaszemski, J. M. Reid, M. M. Ames, P. Mukherjee, and D. Mukhopadhyay. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68:1970–1978 (2008). doi:10.1158/0008-5472.CAN-07-6102.PubMedGoogle Scholar
  42. 42.
    E. Lin, and J. Nemunaitis. Oncolytic viral therapies. Cancer Gene Ther. 11:643–664 (2004). doi:10.1038/sj.cgt.7700733.PubMedGoogle Scholar
  43. 43.
    M. A. Jordan, R. J. Toso, D. Thrower, and L. Wilson. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U.S.A. 90:9552–9556 (1993). doi:10.1073/pnas.90.20.9552.PubMedGoogle Scholar
  44. 44.
    B. H. Long, and C. R. Fairchild. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 54:4355–4361 (1994).PubMedGoogle Scholar
  45. 45.
    N. Wong Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126:6850–6851 (2004). doi:10.1021/ja0486059.Google Scholar
  46. 46.
    H. A. Wood, and P. R. Hughes. Recombinant viral insecticides: Delivery of environmentally safe and cost-effective products. BioControl. 41:361–373 (1996).Google Scholar
  47. 47.
    T. Y. Zakharian, A. Seryshev, B. Sitharaman, B. E. Gilbert, V. Knight, and L. J. Wilson. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 127:12508–12509 (2005). doi:10.1021/ja0546525.PubMedGoogle Scholar
  48. 48.
    R. Bakry, R. M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C. W. Huck, and G. K. Bonn. Medicinal applications of fullerenes. Int. J. Nanomedicine. 2:639–649 (2007).PubMedGoogle Scholar
  49. 49.
    N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa. [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5:2578–2585 (2005). doi:10.1021/nl051866b.PubMedGoogle Scholar
  50. 50.
    M. Taglietti, C. N. Hawkins, and J. Rao. Novel topical drug delivery systems and their potential use in acne vulgaris. Skin Therapy Lett. 13:6–8 (2008).PubMedGoogle Scholar
  51. 51.
    T. Mashino, D. Nishikawa, K. Takahashi, N. Usui, T. Yamori, M. Seki, T. Endo, and M. Mochizuki. Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorg. Med. Chem. Lett. 13:4395–4397 (2003). doi:10.1016/j.bmcl.2003.09.040.PubMedGoogle Scholar
  52. 52.
    R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J. Wilson, and J. M. Alford. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125:5471–5478 (2003). doi:10.1021/ja0340984.PubMedGoogle Scholar
  53. 53.
    E. Tóth, R. D. Bolskar, A. Borel, G. González, L. Helm, A. E. Merbach, B. Sitharaman, and L. J. Wilson. Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127:799–805 (2005). doi:10.1021/ja044688h.PubMedGoogle Scholar
  54. 54.
    F. Rancan, M. Helmreich, A. Mölich, N. Jux, A. Hirsch, B. Röder, C. Witt, and F. Böhm. Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: Uptake and photo-induced cytotoxicity on Jurkat cells. J. Photochem. Photobiol. B. 80:1–7 (2005). doi:10.1016/j.jphotobiol.2005.01.007.PubMedGoogle Scholar
  55. 55.
    K. Murata, K. Kaneko, W. A. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, and S. Iijima. Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies. J. Phys. Chem. B. 105:10210–10216 (2001). doi:10.1021/jp010754f.Google Scholar
  56. 56.
    T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, and K. Shiba. Drug-loaded carbon nanohorns: Adsorption and release of dexamethasone in vitro. Mol. Pharm. 1:399–405 (2004). doi:10.1021/mp049928e.PubMedGoogle Scholar
  57. 57.
    K. Ajima, M. Yudasaka, T. Murakami, A. Maigne, K. Shiba, and S. Iijima. Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2:475–480 (2005). doi:10.1021/mp0500566.PubMedGoogle Scholar
  58. 58.
    D. Mirabile Gattia, M. Vittori Antisari, and R. Marazzi. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnol. 18:255604–255610 (2007). doi:10.1088/0957-4484/18/25/255604.Google Scholar
  59. 59.
    N. G. Portney, and M. Ozkan. Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384:620–630 (2006). doi:10.1007/s00216-005-0247-7.PubMedGoogle Scholar
  60. 60.
    C. R Martin, and P. Kohli. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2:29–37 (2003). doi:10.1038/nrd988.Google Scholar
  61. 61.
    C. W. Pouton, and L. W. Seymour. Key issues in non-viral gene delivery. Adv. Drug. Deliv. Rev. 46:187–203 (2001). doi:10.1016/S0169-409X(00)00133-2.PubMedGoogle Scholar
  62. 62.
    M. -F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84:5552–5555 (2000). doi:10.1103/PhysRevLett.84.5552.PubMedGoogle Scholar
  63. 63.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Physical properties of carbon nanotubes. Imperial College, London, 1998.Google Scholar
  64. 64.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60:2204–2206 (1992). doi:10.1063/1.107080.Google Scholar
  65. 65.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of graphene tubules based on C60. Phys. Rev. B. 46:1804–1811 (1992). doi:10.1103/PhysRevB.46.1804.Google Scholar
  66. 66.
    A. B. Kaiser, G. Düsberg, and S. Roth. Heterogeneous model for conduction in carbon. nanotubes. Phys. Rev. B. 57:1418–1421 (1998). doi:10.1103/PhysRevB.57.1418.Google Scholar
  67. 67.
    S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 298:2361–2366 (2002). doi:10.1126/science.1078727.PubMedGoogle Scholar
  68. 68.
    L. Agüí, P. Yáñez-Sedeño, and J. M. Pingarrón. Role of carbon nanotubes in electroanalytical chemistry: a review. Anal. Chim. Acta. 622:11–47 (2008). doi:10.1016/j.aca.2008.05.070.PubMedGoogle Scholar
  69. 69.
    A. Star, J. P. Gabriel, K. Bradley, and G. Gruner. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3:459–463 (2003). doi:10.1021/nl0340172.Google Scholar
  70. 70.
    P. Avouris, Z. Chen, and V. Perebeinos. Carbon-based electronics. Nat. Nanotechnol. 2:605–615 (2007). doi:10.1038/nnano.2007.300.PubMedGoogle Scholar
  71. 71.
    S. Yoshimoto, Y. Murata, K. Kubo, K. Tomita, K. Motoyoshi, T. Kimura, H. Okino, R. Hobara, I. Matsuda, S. Honda, M. Katayama, and S. Hasegawa. Four-point probe resistance measurements using PtIr-coated carbon nanotube tips. Nano Lett. 7:956–959 (2007). doi:10.1021/nl0630182.PubMedGoogle Scholar
  72. 72.
    R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, and K. Kostarelos. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U.S.A. 103:3357–3362 (2006). doi:10.1073/pnas.0509009103.PubMedGoogle Scholar
  73. 73.
    J. L. Hudson, M. J. Casavant, and J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126:11158–11159 (2004). doi:10.1021/ja0467061.PubMedGoogle Scholar
  74. 74.
    H. Hu, Y. Ni, V. Montana, R. C. Haddon, and V. Parpura. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4:507–511 (2004). doi:10.1021/nl035193d.Google Scholar
  75. 75.
    D. Pantarotto, J.-P. Briand, M. Prato, and A. Bianco. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16–17 (2004). doi:10.1039/b311254c.
  76. 76.
    D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. -P. Briand, M. Prato, K. Kostarelos, and A. Bianco. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43:5242–5236 (2004). doi:10.1002/anie.200460437.Google Scholar
  77. 77.
    M. H. Cato, F. D’Annibale, D. M. Mills, F. Cerignoli, M. I. Dawson, E. Bergamaschi, N. Bottini, A. Magrini, A. Bergamaschi, N. Rosato, R. C. Rickert, T. Mustelin, and M. Bottini. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J. Nanosci. Nanotechnol. 8:2259–2269 (2008). doi:10.1166/jnn.2008.501.PubMedGoogle Scholar
  78. 78.
    C. J. Gannon, P. Cherukuri, B. I. Yakobson, L. Cognet, J. S. Kanzius, C. Kittrell, R.B. Weisman, M. Pasquali, H. K. Schmidt, R. E. Smalley, and S. A. Curley. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer. 110:2654–2665 (2007). doi:10.1002/cncr.23155.PubMedGoogle Scholar
  79. 79.
    P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126:15638–15639 (2004). doi:10.1021/ja0466311.PubMedGoogle Scholar
  80. 80.
    H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Functionalized carbon nanotubes are non toxic and preserve the functionality of primary immune cells. Nano Lett. 6:1522–1528 (2006). doi:10.1021/nl061160x.PubMedGoogle Scholar
  81. 81.
    K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2:108–113 (2007). doi:10.1038/nnano.2006.209.PubMedGoogle Scholar
  82. 82.
    R. J. Chen, Y. Zhang, D. Wang, and H. Dai. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123:3838–3839 (2001). doi:10.1021/ja010172b.PubMedGoogle Scholar
  83. 83.
    Z. Jin, L. Huang, S.H. Goh, G. Xu, and W. Ji. Characterization and nonlinear optical properties of a poly(acrylic acid)–surfactant–multi-walled carbon nanotube complex. Chem. Phys. Lett. 332:461–466 (2000). doi:10.1016/S0009-2614(00)01294-X.Google Scholar
  84. 84.
    B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290:1331–1334 (2000). doi:10.1126/science.290.5495.1331.PubMedGoogle Scholar
  85. 85.
    A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, and J. R. Heath. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 40:1721–1725 (2001). doi:10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F.Google Scholar
  86. 86.
    A. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. Huffman, F. Rodriguez-Macias, P. Boul, A. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. Fischer, A. Rao, P. C. Eklund, and R. E. Smalley. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A. 67:29–37 (1998). doi:10.1007/s003390050734.Google Scholar
  87. 87.
    G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, and S. Roth. Chromatographic size separation of single-wall carbon nanotubes. Appl. Phys. A. 67:117–119 (1998). doi:10.1007/s003390050747.Google Scholar
  88. 88.
    M. Holzinger, A. Hirsh, P. Bernier, G. S. Duesberg, and M. Burghard. A new purification method for single-wall carbon nanotubes (SWNTs). Appl. Phys. A. 70:599–602 (2000). doi:10.1007/s003390051087.Google Scholar
  89. 89.
    G. Pagona, and N. Tagmatarchis. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr. Med. Chem. 13:1789–1798 (2006). doi:10.2174/092986706777452524.PubMedGoogle Scholar
  90. 90.
    M. Holzinger, O. Vostrowsky, A. Hirsh, F. Hennrich, M. Kappes, R. Weiss, and F. Jellen. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40:4002–4005 (2001). doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8.Google Scholar
  91. 91.
    M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsh. Functionalization of single-walled carbon nanotubes with (R-)Oxycarbonyl nitrenes. J. Am. Chem. Soc. 125:8566–8580 (2003). doi:10.1021/ja029931w.PubMedGoogle Scholar
  92. 92.
    Z. Yinghuai, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, and M. Takagaki. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc. 127:9875–9880 (2005). doi:10.1021/ja0517116.PubMedGoogle Scholar
  93. 93.
    M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley, and R. Graupner. [2+1] cycloaddition for cross-linking SWNTs. Carbon. 42:941–947 (2004). doi:10.1016/j.carbon.2003.12.019.Google Scholar
  94. 94.
    J. L. Bahr, and J. M. Tour. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13:3823–3824 (2001). doi:10.1021/cm0109903.Google Scholar
  95. 95.
    J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123:6536–6542 (2001). doi:10.1021/ja010462s.PubMedGoogle Scholar
  96. 96.
    C. A. Dyke, and J. M. Tour. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 125:1156–1157 (2003). doi:10.1021/ja0289806.PubMedGoogle Scholar
  97. 97.
    J. L. Hudson, M. J. Caavant, and J. M. Tour. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126:11158–11159 (2004). doi:10.1021/ja0467061.PubMedGoogle Scholar
  98. 98.
    H. Paloniemi, T. Aäritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, and J. Lukkari. Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization. J. Phys. Chem. B. 109:8634–8642 (2005). doi:10.1021/jp0443097.PubMedGoogle Scholar
  99. 99.
    H. Zhang, H. X. Li, and H. M. Cheng. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline. J. Phys. Chem. B. 110:9095–9099 (2006). doi:10.1021/jp060193y.PubMedGoogle Scholar
  100. 100.
    A. Liu, T. Watanabe, I. Honma, J. Wang, and H. Zhou. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens. Bioelectron. 22:694–699 (2006). doi:10.1016/j.bios.2006.02.006.PubMedGoogle Scholar
  101. 101.
    K. Besteman, J. -O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3:727–730 (2003). doi:10.1021/nl034139u.Google Scholar
  102. 102.
    H. Xin, and A. T. Woolley. DNA-templated nanotube localization. J. Am. Chem. Soc. 125:8710–8711 (2003). doi:10.1021/ja035902p.PubMedGoogle Scholar
  103. 103.
    B. J. Taft, A. D. Lazareck, G. D. Withey, A. Yin, J. M. Xu, and S. O. Kelley. Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc. 126:12750–12751 (2004). doi:10.1021/ja045543d.PubMedGoogle Scholar
  104. 104.
    L. Liu, T. Wang, J. Li, Z. Guo, L. Dai, D. Zhang, and D. Zhu. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem. Phys. Lett. 367:747–752 (2003). doi:10.1016/S0009-2614(02)01789-X.Google Scholar
  105. 105.
    A. B. Dalton, C. Stephan, J. N. Coleman, B. McCarthy, P. M. Ajayan, S. Lefrant, P. Bernier, W. J. Blau, and H. J. Byrne. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B. 104:10012–10016 (2000). doi:10.1021/jp002857o.Google Scholar
  106. 106.
    D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F. Stoddart, and J. R. Heath. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B. 106:3124–3130 (2002). doi:10.1021/jp014326l.Google Scholar
  107. 107.
    A. Star, and J. F. Stoddart. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromol. 35:7516–7520 (2002). doi:10.1021/ma0204150.Google Scholar
  108. 108.
    C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules. 35:8825–8830 (2002). doi:10.1021/ma020890y.Google Scholar
  109. 109.
    J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, B. Lahr, P. M. Ajayan, S. Roth, R. C. Barklie, and W. J. Blau. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12:213–216 (2000). doi:10.1002/(SICI)1521-4095(200002)12:3<213::AID-ADMA213>3.0.CO;2-D.Google Scholar
  110. 110.
    R. Murphy, J. N. Coleman, M. Cadek, B. McCarthy, M. Bent, A. Drury, R. C. Barklie, and W. J. Blau. High-yield, nondestructive purification and quantification method for multiwalled carbon nanotubes. J. Phys. Chem. B. 106:3087–3091 (2002). doi:10.1021/jp0132836.Google Scholar
  111. 111.
    J. N. Coleman, D. F. O’Brien, A. B. Dalton, B. McCarthy, B. Lahr, R. C. Barklie, and W. J. Blau. Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. J. Chem. Phys. 113:9788–9793 (2000). doi:10.1063/1.1322032.Google Scholar
  112. 112.
    M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3:269–273 (2003). doi:10.1021/nl025924u.Google Scholar
  113. 113.
    C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 300:775–778 (2003). doi:10.1126/science.1080848.PubMedGoogle Scholar
  114. 114.
    M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R. B. Weisman, and R. E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 297:593–596 (2002). doi:10.1126/science.1072631.PubMedGoogle Scholar
  115. 115.
    V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3:1379–1382 (2003). doi:10.1021/nl034524j.Google Scholar
  116. 116.
    W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach, and A. Bouwen. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14:1105–1112 (2004). doi:10.1002/adfm.200400130.Google Scholar
  117. 117.
    M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342:265–271 (2001). doi:10.1016/S0009-2614(01)00490-0.Google Scholar
  118. 118.
    I. Singh, P. K. Bhatnagar, P. C. Mathur, and L. M. Bharadwaj. Optical absorption spectrum of single-walled carbon nanotubes dispersed in sodium cholate and sodium dodecyl sulfate. J. Mat. Res. 23:632–636 (2008). doi:10.1557/jmr.2008.0078.Google Scholar
  119. 119.
    S. Park, H. S. Yang, D. Kim, K. Jo, and S. Jon. Rational design of amphiphilic polymers to make carbon nanotubes water-dispersible, anti-biofouling, and functionalizable. Chem. Commun. 2876–2878 (2008). doi:10.1039/b802057d.
  120. 120.
    Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1:50–56 (2007). doi:10.1021/nn700040t.PubMedGoogle Scholar
  121. 121.
    H. Ali-Boucetta, K. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, and K. Kostarelos. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 459–461 (2008). doi:10.1039/b712350g.
  122. 122.
    Y. Ito, N. Venkatesan, N. Hirako, N. Sugioka, and K. Takada. Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. Int. J. Pharm. 337:357–360 (2007). doi:10.1016/j.ijpharm.2006.12.042.PubMedGoogle Scholar
  123. 123.
    N. W. S. Kam, M. O’Connell, J. A. Wisdom, and H. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A. 102:11600–11605 (2005). doi:10.1073/pnas.0502680102.PubMedGoogle Scholar
  124. 124.
    C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. A. H. Ward, Y. Huh, and M. L. H. Green. The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv. Mater. 19:883–887 (2007). doi:10.1002/adma.200601310.Google Scholar
  125. 125.
    Y. -P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, and D. L. Carroll. Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties. Chem. Mater. 13:2864–2869 (2001). doi:10.1021/cm010069l.Google Scholar
  126. 126.
    K. Fu, W. Huang, Y. Lin, L. A. Riddle, D. L. Carroll, and Y. -P. Sun. Defunctionalization of functionalized carbon nanotubes. Nano Lett. 1:439–441 (2001). doi:10.1021/nl010040g.Google Scholar
  127. 127.
    M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon. Dissolution of single-walled carbon nanotubes. Adv. Mater. 11:834–840 (1999). doi:10.1002/(SICI)1521-4095(199907)11:10<834::AID-ADMA834>3.0.CO;2-R.Google Scholar
  128. 128.
    A. Kukovecz, C. Kramberger, M. Holzinger, H. Kuzmany, J. Schalko, M. Mannsberger, and A. Hirsch. On the stacking behavior of functionalized single-wall carbon nanotubes. J. Phys. Chem. B. 106:6374–6380 (2002). doi:10.1021/jp014019f.Google Scholar
  129. 129.
    J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B. 105:2525–2528 (2001). doi:10.1021/jp002596i.Google Scholar
  130. 130.
    Y. P. Sun, K. Fu, Y. Lin, and W. Huang. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35:1096–1104 (2002). doi:10.1021/ar010160v.PubMedGoogle Scholar
  131. 131.
    W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T. W. Hanks, A. M. Rao, and Y.-P. Sun. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2:311–314 (2002). doi:10.1021/nl010095i.Google Scholar
  132. 132.
    S. E. Baker, W. Cai, T. L. Lasseter, K. P. Weidkamp, and R. J. Hamers. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2:1413–1417 (2002). doi:10.1021/nl025729f.Google Scholar
  133. 133.
    M. Hazani, R. Naaman, F. Hennrich, and M. M. Kappes. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett. 3:153–155 (2003). doi:10.1021/nl025874t.Google Scholar
  134. 134.
    Z. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. F. Hwang, and J. M. Tour. Soluble ultra-short single-walled carbon nanotubes. J. Am. Chem. Soc. 128:10568–10571 (2006). doi:10.1021/ja063283p.PubMedGoogle Scholar
  135. 135.
    G. Pastorin, W. Wu, S. Wieckowski, J. -P. Briand, K. Kostarelos, M. Prato, and A. Bianco. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182–1184 (2006). doi:10.1039/b516309a.
  136. 136.
    R. Pignatello, S. Guccione, S. Forte, C. Di Giacomo, V. Sorrenti, L. Vicari, G. Uccello Barretta, F. Balzano, and G. Puglisi. Lipophilic conjugates of methotrexate with short-chain alkylamino acids as DHFR inhibitors. Synthesis, biological evaluation, and molecular modeling. Bioorg. Med. Chem. 12:2951–2964 (2004). doi:10.1016/j.bmc.2004.03.040.PubMedGoogle Scholar
  137. 137.
    W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.-P. Briand, R. Gennaro, M. Prato, and A. Bianco. Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes. Angew. Chem. Int. Ed. 44:6358–6362 (2005). doi:10.1002/anie.200501613.Google Scholar
  138. 138.
    S. B. Zotchev. Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 10:211–223 (2003).PubMedGoogle Scholar
  139. 139.
    J. Szlinder-Richert, B. Cybulska, J. Grzybowska, J. Bolard, and E. Borowski. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Farmaco. 59:289–296 (2004). doi:10.1016/j.farmac.2003.12.007.PubMedGoogle Scholar
  140. 140.
    D. Pantarotto, C.D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, and A. Bianco. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10:961–966 (2003). doi:10.1016/j.chembiol.2003.09.011.PubMedGoogle Scholar
  141. 141.
    D. Cai, J. M. Mataraza, Z. -H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2:449–454 (2005). doi:10.1038/nmeth761.PubMedGoogle Scholar
  142. 142.
    Q. Lu, J. M. Moore, G. Huang, A. S. Mount, A. M. Rao, L. L. Larcom, and P. C. Ke. RNA Polymer translocation with single-walled carbon nanotubes. Nano Lett. 4:2473–2477 (2004). doi:10.1021/nl048326j.Google Scholar
  143. 143.
    N. Wong Shi Kam, and H. Dai. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127:6021–6026 (2005). doi:10.1021/ja050062v.Google Scholar
  144. 144.
    N. Wong Shi Kam, Z. Liu, and H. Dai. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45:577–581 (2006). doi:10.1002/anie.200503389.Google Scholar
  145. 145.
    Y. Liu, D.-C. Wu, W.-D. Zhang, X. Jiang, C.-B. He, T. S. Chung, S. H. Goh, and K. W. Leong. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. It. Ed. 44:4782–4785 (2005).Google Scholar
  146. 146.
    T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, and K. Ohno. Enhanced electron-capture decay rate of 7Be encapsulated in C60 cages. Phys. Rev. Lett. 93:112501 (2004). doi:10.1103/PhysRevLett.93.112501.PubMedGoogle Scholar
  147. 147.
    S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, and S. Iijima. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337:48–54 (2001). doi:10.1016/S0009-2614(01)00192-0.Google Scholar
  148. 148.
    K. Yanagi, Y. Miyata, and H. Kataura. Highly stabilized-carotene in carbon nanotubes. Adv. Mater. 18:437–441 (2006). doi:10.1002/adma.200501839.Google Scholar
  149. 149.
    H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, and W. Krätschmer. High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121:1195–1196 (2001). doi:10.1016/S0379-6779(00)00707-4.Google Scholar
  150. 150.
    L. J. Li, N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs, and R. J. Nicholas. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater. 4:481–485 (2005). doi:10.1038/nmat1396.PubMedGoogle Scholar
  151. 151.
    B. W. Smith, M. Mothioux, and D. E. Luzzi. Encapsulated C60 in carbon nanotubes. Nature. 396:323–324 (1998). doi:10.1038/24521.Google Scholar
  152. 152.
    T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2:683–688 (2003). doi:10.1038/nmat976.PubMedGoogle Scholar
  153. 153.
    F. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Korecz, F. Fülöp, and A. Jánossy. Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383:362–367 (2004). doi:10.1016/j.cplett.2003.11.039.Google Scholar
  154. 154.
    L. Shao, T. -W. Lin, G. Tobias, and M. L. H. Green. A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules. Chem. Commun. 2164–2166 (2008). doi:10.1039/b800881g.
  155. 155.
    N. I. Krinsky, and K. J. Yeum. Carotenoid-radical interactions. Biochem. Biophys. Res. Commun. 305:754–760 (2003). doi:10.1016/S0006-291X(03)00816-7.PubMedGoogle Scholar
  156. 156.
    B. H. Chen, and J. H. Huang. Degradation and isomerization of chlorophyll a and β-carotene as affected by various heating and illumination treatments. Food Chem. 62:299–307 (1998). doi:10.1016/S0308-8146(97)00201-X.Google Scholar
  157. 157.
    G. Ning, N. Kishi, H. Okimoto, M. Shiraishi, Y. Kato, R. Kitaura, T. Sugai, S. Aoyagi, E. Nishibori, M. Sakata, and H. Shinohara. Synthesis, enhanced stability and structural imaging of C60 and C70 double-wall carbon nanotube peapods. Chem. Phys. Lett. 441:94–99 (2007). doi:10.1016/j.cplett.2007.04.073.Google Scholar
  158. 158.
    H. Kawamoto, T. Uchida, K. Kojima, and M. Tachibana. Raman study of DNA-wrapped single-wall carbon nanotube hybrids under various humidity conditions. Chem. Phys. Lett. 431:118–120 (2006). doi:10.1016/j.cplett.2006.09.048.Google Scholar
  159. 159.
    V. A. Karachevtsev, A. Y. Glamazda, U. Dettlaff-Weglikowska, V. S. Leontiev, P. V. Mateichenko, S. Roth, and A. M. Rao. Spectroscopic and SEM studies of SWNTs: Polymer solutions and films. Carbon. 44:1292–1297 (2006). doi:10.1016/j.carbon.2005.08.008.Google Scholar
  160. 160.
    Y. Ren, and G. Pastorin. Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv. Mater. 20:2031–2036 (2008). doi:10.1002/adma.200702292.Google Scholar
  161. 161.
    M. Yudasaka, K. Aijima, K. Suenaga, T. Ichihashi, A. Hashimoto, and S. Iijima. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem. Phys. Lett. 380:42–46 (2003). doi:10.1016/j.cplett.2003.08.095.Google Scholar
  162. 162.
    A. Mrzel, A. Hassanien, Z. Liu, K. Suenaga, Y. Miyata, K. Yanagi, and H. Kataura. Effective, fast, and low temperature encapsulation of fullerene derivatives in single wall carbon nanotubes. Surf. Sci. 601:5116–5120 (2007). doi:10.1016/j.susc.2007.04.236.Google Scholar
  163. 163.
    K. Yanagi, K. Iakoubovskii, H. Matsui, H. Matsuzaki, H. Okamoto, Y. Miyata, Y. Maniwa, S. Kazaoui, N. Minami, and H. Kataura. Photosensitive function of encapsulated dye in carbon nanotubes. J. Am. Chem. Soc. 129:4992–4997 (2007). doi:10.1021/ja067351j.PubMedGoogle Scholar
  164. 164.
    S. Hampel, D. Kunze, D. Haase, K. Krämer, M. Rauschenbach, M. Ritschel, A. Leonhardt, J. Thomas, S. Oswald, V. Hoffman, and B. Büchner. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomed. 3:175–182 (2008). doi:10.2217/17435889.3.2.175.PubMedGoogle Scholar
  165. 165.
    T. E. Ebbesen. Wetting, filling and decorating carbon nanotubes. J. Phys. Chem. Solids. 57:951–955 (1996). doi:10.1016/0022-3697(95)00381-9.Google Scholar
  166. 166.
    A. Bianco, K. Kostarelos, and M. Prato. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin. Drug Deliv. 5:331–342 (2008). doi:10.1517/17425247.5.3.331.PubMedGoogle Scholar
  167. 167.
    P. M. Ajayan. Nanotubes from carbon. Chem. Rev. 99:1787–1800 (1999). doi:10.1021/cr970102g.PubMedGoogle Scholar
  168. 168.
    M. Jacoby. Nanoscale electronics. Chem. Eng. News. 80:38–43 (2002).Google Scholar
  169. 169.
    D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124:11864–11865 (2002). doi:10.1021/ja027247b.PubMedGoogle Scholar
  170. 170.
    S.B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin. Antibody-based bio/nanotube membranes for enantiomeric drug separation. Science. 296:2198–2200 (2002). doi:10.1126/science.1071396.PubMedGoogle Scholar
  171. 171.
    Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R. B. S. Roden, Y. Chen, and R. Yang. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumour growth. Clin. Cancer Res. 12:4933–4939 (2006). doi:10.1158/1078-0432.CCR-05-2831.PubMedGoogle Scholar
  172. 172.
    R. P. Feazell, N. Nakayama-Ratchford, H. Dai, and S. J. Lippard. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129:8438–8439 (2007). doi:10.1021/ja073231f.PubMedGoogle Scholar
  173. 173.
    B. Z. Yu, J. S. Yang, and W. X. Li. In vitro capability of multi-walled carbon nanotube modified with gonadotrophin releasing hormone on killing cancer cells. Carbon. 45:1921–1927 (2007). doi:10.1016/j.carbon.2007.06.015.Google Scholar
  174. 174.
    B. Panchapakesan, S. Lu, K. Sivakumar, K. Taker, G. Cesarone, and E. Wickstrom. Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBioTechnology. 1:133–139 (2005). doi:10.1385/NBT:1:2:133.Google Scholar
  175. 175.
    N. Shao, S. Lu, E. Wickstrom, and B. Panchapakesan. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnol. 18:315101 (2007)(9 pages).Google Scholar
  176. 176.
    R. Weiss. Of mice, men and in-between: scientists debate blending of human, animal forms. Washington Post, February 2004, A01.Google Scholar
  177. 177.
    K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. Carbon nanotubes: A review of their properties in relation to pulmonary toxicological and workplace safety. Toxicol. Sci. 92:5–22 (2006). doi:10.1093/toxsci/kfj130.PubMedGoogle Scholar
  178. 178.
    G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39:1378–1383 (2005). doi:10.1021/es048729l.PubMedGoogle Scholar
  179. 179.
    K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm. Nanotoxicology. Occup. Environ. Med. 61:727–728 (2004). doi:10.1136/oem.2004.013243.PubMedGoogle Scholar
  180. 180.
    C. L. Tran, D. Buchanan, R. T. Cullen, A. Searl, A. D. Jones, and K. Donaldson. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12:1113–1126 (2000). doi:10.1080/08958370050166796.PubMedGoogle Scholar
  181. 181.
    C. M. Sayes, F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, V. C. Moore, C. D. Doyle, J. L. West, W. E. Billups, K. D. Ausman, and V. L. Colvin. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161:135–142 (2006). doi:10.1016/j.toxlet.2005.08.011.PubMedGoogle Scholar
  182. 182.
    C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. Mnee, and K. Donaldson. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3:423–428 (2008). doi:10.1038/nnano.2008.111.PubMedGoogle Scholar
  183. 183.
    L. Lacerda, H. Ali-Bouchetta, M. A. Herrero, G. Pastorin, A. Bianco, M. Prato, and K. Kostarelos. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomed. 3:149–161 (2008). doi:10.2217/17435889.3.2.149.PubMedGoogle Scholar
  184. 184.
    Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, and K. Tohji. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1:176–182 (2005). doi:10.1039/b502429c.PubMedGoogle Scholar
  185. 185.
    M. L. Schipper, N. Nakayama-Ratchford, C. R. Davis, N. Wong Shi Kam, P. Chu, Z. Liu, X. Sun, H. Dai, and S. S. Gambhir. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3:216–221 (2008). doi:10.1038/nnano.2008.68.PubMedGoogle Scholar
  186. 186.
    H. F. Wang, J. Wang, X. Y. Deng, H. F. Sun, Z. J. Shi, Z. N. Gu, Y. F. Liu, and Y. L. Zhao. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4:1019–1024 (2004). doi:10.1166/jnn.2004.146.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations