Pharmaceutical Research

, Volume 26, Issue 4, pp 958–964

Effect of Atorvastatin Versus Rosuvastatin on Levels of Serum Lipids, Inflammatory Markers and Adiponectin in Patients with Hypercholesterolemia

  • Hai-yan Qu
  • Ya-wei Xiao
  • Gui-hua Jiang
  • Zhi-yun Wang
  • Yun Zhang
  • Mei Zhang
Research Paper

Abstract

Purpose

To compare the short-term effect of treatment with atorvastatin and rosuvastatin on levels of serum lipids, inflammatory markers and adiponectin in patients with hypercholesterolemia.

Methods

Sixty-nine patients with hypercholesterolemia were randomly assigned to receive 10 mg/day of atorvastatin or rosuvastatin for 12 weeks. Inflammatory biomarkers, including highsensitivity C-reactive protein (hs-CRP), tumor necrosis factor (TNF)-alpha, matrix metalloproteinase-9 (MMP-9), and endothelin (ET-1), plasminogen activator inhibitor type 1 (PAI-1) and plasma tissue plasminogen activator (tPA), adiponectin, and lipid profiles were measured before and after statin therapy.

Results

Atorvastatin and rosuvastatin both lowered levels of hs-CRP, MMP-9, PAI-1, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) from baseline values, with rosuvastatin lowering TC and LDL-C to a greater extent than atorvastatin (P < 0.05). Adiponectin level increase was 15% higher than that at baseline with atorvastatin (P > 0.05) but 67% higher with rosuvastatin (P < 0.05).

Conclusions

Therapy with both statins not only significantly improved lipid profiles but also decreased levels of vascular biomarkers hs-CRP, MMP-9, and PAI-1; however, only rosuvastatin increased serum adiponectin levels significantly in patients with hypercholesterolemia, which could imply a beneficial effect in coronary artery disease.

KEY WORDS

atorvastatin endothelium hypercholesterolemia rosuvastatin serum adiponectin 

References

  1. 1.
    M. Matsubara, S. Maruoka, and S. Katayose. Decreased plasma adiponectin concentrations in women with dyslipidemia. J. Clin. Endocrinol. Metab. 87:2764–2769 (2002). doi:10.1210/jc.87.6.2764.PubMedCrossRefGoogle Scholar
  2. 2.
    P.J. Havel. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes. 53(suppl 1):S143–151 (2004). doi:10.2337/diabetes.53.2007.S143.PubMedCrossRefGoogle Scholar
  3. 3.
    M. Chandran, S. A. Phillips, T. Ciaraldi, and R. R. Henry. Adiponectin: more than just another fat cell hormone? Diabetes Care. 26:2442–2450 (2003). doi:10.2337/diacare.26.8.2442.PubMedCrossRefGoogle Scholar
  4. 4.
    T. Kadowaki, and T. Yamauchi. Adiponectin and adiponectin receptors. Endocr. Rev. 26:439–451 (2005). doi:10.1210/er.2005-0005.PubMedCrossRefGoogle Scholar
  5. 5.
    K. Miyagishima, S. Hiramitsu, and S. Kato. Efficacy of atorvastatin therapy in ischaemic heart disease-effects on oxidized low-density lipoprotein and adiponectin. J. Int. Med. Res. 35:534–539 (2007).PubMedGoogle Scholar
  6. 6.
    K. K. Koh, M. J. Quon, S. H. Han, W. J. Chung, J. Y. Ahn, Y. H. Seo, I. S. Choi, and E. K. Shin. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J. Am. Coll. Cardiol. 45:1649–1653 (2005). doi:10.1016/j.jacc.2005.02.052.PubMedCrossRefGoogle Scholar
  7. 7.
    S. Wissen, T. J. Smilde, E. Groot, BA. Hutten, J. J. Kastelein, and A. F. Stalenhoef. The significance of femoral intima-media thickness and plaque scoring in the Atorvastatin versus Simvastatin on Atherosclerosis Progression (ASAP) study. Eur. J. Cardiovasc. Prev. Rehabil. 10:451–455 (2003). doi:10.1097/01.hjr.0000103277.02552.1e.PubMedCrossRefGoogle Scholar
  8. 8.
    K. K. Koh, C. Cardillo, M. N. Bui, L. Hathaway, G. Csako, M. A. Waclawiw, J. A. Panza, and R. O. III Cannon. Vascular Effects of estrogen and cholesterol-lowering therapies on vascular function in hypercholesterolemic postmenopausal women. Circulation. 99:354–360 (1999).PubMedGoogle Scholar
  9. 9.
    R. C. Schlant, and R. W. Alexander. Hurst’s the heart: Arteries and veins. 8McGraw-Hill, New York, 1995.Google Scholar
  10. 10.
    A. Niemann-Jönsson, P. Dimayuga, S. Jovinge, F. Calara, M. P. S. Ares, G. N. Fredrikson, and J. Nilsson. Accumulation of LDL in rat arteries is associated with activation of tumor necrosis factor- expression. Arterioscler. Thromb. Vasc. Biol. 20:2205–2211 (2000).PubMedGoogle Scholar
  11. 11.
    K. K. Ray, C. P. Cannon, and P. Ganz. Beyond lipid lowering: What have we learned about the benefits of statins from the acute coronary syndromes trials? Am. J. Cardiol. 98:18P–25P (2006). doi:10.1016/j.amjcard.2006.09.016.PubMedCrossRefGoogle Scholar
  12. 12.
    G. G. Schwartz, A. G. Olsson, M. D. Ezekowitz, P. Ganz, M. F. Oliver, D. Waters, A. Zeiher, B. R. Chaitman, S. Leslie, and T. Stern. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 285:1711–1718 (2001). doi:10.1001/jama.285.13.1711.PubMedCrossRefGoogle Scholar
  13. 13.
    T. C. Andrews, C. M. Ballantgne, J. A. Hsia, and J. H. Kramer. Achieving and maintaining National Cholesterol Education Program Low-density lipoprotein cholesterol goals with five statins. Am. J. Med. 111:185–191 (2001). doi:10.1016/S0002-9343(01)00799-9.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Cheng-Lai. Rosuvastatin: A new HMG-CoA reductase inhibitor for the treatment of hypercholesterolemia. Heart Disease. 5:72–78 (2003). doi:10.1097/01.HDX.0000050417.89309.F8.PubMedCrossRefGoogle Scholar
  15. 15.
    P. H. Jones, M. H. Davidson, E. A. Stein, H. E. Bays, J. M. McKenney, E. Miller, V. A. Cain, J. W. Blasetto, and STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Am. J. Cardiol. 92:152–160 (2003). doi:10.1016/S0002-9149(03)00530-7.PubMedCrossRefGoogle Scholar
  16. 16.
    P. Libby, R. O. Bonow, D. L. Mann, D. P. Zipes, and E. Braunwald. Braunwald’s heart disease: A textbook of cardiovascular medicine. 8Saunders, USA, 2007.Google Scholar
  17. 17.
    S. H. Johnsen, E. B. Mathiesen, E. Fosse, O. Joakimsen, E. Stensland-Bugge, I. Njølstad, and E. Arnesen. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression. Circulation. 112:498–504 (2005). doi:10.1161/CIRCULATIONAHA.104.522706.PubMedCrossRefGoogle Scholar
  18. 18.
    S. E. Nissen, E. M Tuzcu, P. Schoenhagen, T. Crowe, W. J. Sasiela, J. Tsai, J. Orazem, R. D. Magorien, C. O. 'Shaughnessy, P. Ganz, and the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352:29–38 (2005). doi:10.1056/NEJMoa042000.PubMedCrossRefGoogle Scholar
  19. 19.
    G. Weitz-Schmidt, K. Welzenbach, V. Brinkmann, T. Kamata, J. Kallen, C. Bruns, S. Cottens, Y. Takada, and U. Hommel. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med. 7:687–692 (2001). doi:10.1038/89058.PubMedCrossRefGoogle Scholar
  20. 20.
    T. Bourcier, and P. Libby. HMG-CoA reductase inhibitors reduce plasminogen activator inhibitor-1 expression by human vascular smooth muscle and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20:556–562 (2000).PubMedGoogle Scholar
  21. 21.
    A. Undas, K. E. Brummel-Ziedins, and K. G. Mann. Statins and blood coagulation. Arterioscler. Thromb. Vasc. Biol. 25:287–294 (2005). doi:10.1161/01.ATV.0000151647.14923.ec.PubMedCrossRefGoogle Scholar
  22. 22.
    L. O. Jensen, P. Thayssen, K. E. Pedersen, S. Stender, and T. Haghfelt. Regression of coronary atherosclerosis by simvastatin: a serial intravascular ultrasound study. Circulation. 110:265–270 (2004). doi:10.1161/01.CIR.0000135215.75876.41.PubMedCrossRefGoogle Scholar
  23. 23.
    K. J. Molloy, M. M. Thompson, E. C. Schwalbe, P. R. Bell, A. R. Naylor, and I. M. Loftus. Comparison of levels of matrix metalloproteinases, tissue inhibitor of metalloproteinases, interleukins, and tissue necrosis factor in carotid endarterectomy specimens from patients on versus not on statins preoperatively. Am. J. Cardiol. 94:144–146 (2004). doi:10.1016/j.amjcard.2004.03.050.PubMedCrossRefGoogle Scholar
  24. 24.
    J. Calles-Escandon, and M. Cipolla. Diabetes and endothelial dysfunction: A clinical perspective. Endocr. Rev. 22:36 (2001). doi:10.1210/er.22.1.36.PubMedCrossRefGoogle Scholar
  25. 25.
    M. Crisby, G. Nordin-Fredriksson, P. K. Shah, J. Yano, J. Zhu, and J. Nilsson. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 103:926–933 (2001).PubMedGoogle Scholar
  26. 26.
    M. Juonala, J. S. Viikari, T. Laitinen, J. Marniemi, H. Helenius, T. Ronnemaa, and O. T. Raitakari. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: the Cardiovascular Risk in Young Finns study. Circulation. 110:2918–2923 (2004). doi:10.1161/01.CIR.0000147540.88559.00.PubMedCrossRefGoogle Scholar
  27. 27.
    S. H. Wilson, R. D. Simari, P. J. Best, T. E. Peterson, L. O. Lerman, M. Aviram, K. A. Nath, D. R. Jr Holmes, and A. Lerman. Simvastatin preserves coronary endothelial function in hypercholesterolemia in the absence of lipid lowering. Arterioscler Thromb Vasc Biol. 21:546–554 (2001). doi:10.1161/hq1101.097805.CrossRefGoogle Scholar
  28. 28.
    J. K. Williams, G. K. Sukhova, D. M. Herrington, and P. Libby. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J. Am. Coll. Cardiol. 31:684–691 (1998). doi:10.1016/S0735-1097(97)00537-8.PubMedCrossRefGoogle Scholar
  29. 29.
    I. V. Sergienko, E. I. U. Samoĭlenko, V. P. Masenko, M. V. Ezhov, A. B. Sumarokov, G. A. Tkachev, O. A. Pogorelova, T. V. Balakhonova, and V. G. Naumov. Effect of therapy with rosuvastatin on lipid spectrum, factors of inflammation and endothelial function in patients with ischemic heart disease. Kardiologiia. 46:4–8 (2006).PubMedGoogle Scholar
  30. 30.
    E. Ter Avest, E. J. Abbink, S. Holewijn, J. de Graaf, C. J. Tack, and A. F. Stalenhoef. Effects of rosuvastatin on endothelial function in patients with familial combined hyperlipidaemia (FCH). Curr. Med. Res. Opin. 21:1469–1476 (2005). doi:10.1185/030079905X61910.PubMedCrossRefGoogle Scholar
  31. 31.
    R. Ross. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362:801–809 (1993). doi:10.1038/362801a0.PubMedCrossRefGoogle Scholar
  32. 32.
    D. M. Maahs, L. G. Ogden, G. L. Kinney, P. Wadwa, J. K. Snell-Bergeon, D. Dabelea, J. E. Hokanson, J. Ehrlich, R. H. Eckel, and M. Rewers. Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation. 111:747–753 (2005). doi:10.1161/01.CIR.0000155251.03724.A5.PubMedCrossRefGoogle Scholar
  33. 33.
    M. B. Schulze, E. B. Rimm, I. Shai, N. Rifai, and F. B. Hu. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. Diabetes Care. 27:1680–1687 (2004). doi:10.2337/diacare.27.7.1680.PubMedCrossRefGoogle Scholar
  34. 34.
    M. Cnop, P. J. Havel, K. M. Utzschneider, D. B. Carr, M. K. Sinha, E. J. Boyko, B. M. Retzlaff, R. H. Knopp, J. D. Brunzell, and S. E. Kahn. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 46:459–469 (2003).PubMedGoogle Scholar
  35. 35.
    T. Yamauchi, K. Hara, N. Kubota, Y. Terauchi, K. Tobe, P. Froguel, R. Nagai, and T. Kadowaki. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr. Drug Targets Immune. Endocr. Metabol. Disord. 3:243–254 (2003). doi:10.2174/1568008033340090.PubMedCrossRefGoogle Scholar
  36. 36.
    C. -J. Li, H. -W. Sun, F. -L. Zhu, L. Chen, Y. -Y. Rong, Y. Zhang, and M. Zhang. Local Adiponectin treatment reduces atherosclerotic plaque size in rabbits. J. Endocrinol. 193:137–145 (2007). doi:10.1677/JOE-06-0173.PubMedCrossRefGoogle Scholar
  37. 37.
    T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu, and E. B. Rimm. Plasma adiponectin levels and risk of myocardial infarction in men. J. Am. Med. Assoc. 291:1730–1737 (2004). doi:10.1001/jama.291.14.1730.CrossRefGoogle Scholar
  38. 38.
    H. Chen, M. Montagnani, T. Funahashi, I. Shimomura, and M. J. Quon. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 278:45021–45026 (2003). doi:10.1074/jbc.M307878200.PubMedCrossRefGoogle Scholar
  39. 39.
    H. Kato, H. Kashiwagi, M. Shiraga, S. Tadokoro, T. Kamae, H. Ujiie, S. Honda, S. Miyata, Y. Ijiri, J. Yamamoto, N. Maeda, T. Funahashi, Y. Kurata, I. Shimomura, Y. Tomiyama, and Y. Kanakura. Adiponectin acts as an endogenous antithrombotic factor. Arterioscler. Thromb. Vasc. Biol. 26:224–230 (2006). doi:10.1161/01.ATV.0000194076.84568.81.PubMedCrossRefGoogle Scholar
  40. 40.
    G. A. Laughlin, E. Barrett-Connor, S. May, and C. Langenberg. Association of Adiponectin with coronary heart disease and mortality: The Rancho Bernardo study. Am. J. Epidemiol. 165:164–174 (2007). doi:10.1093/aje/kwk001.PubMedCrossRefGoogle Scholar
  41. 41.
    S. Devaraj, D. Siegel, and I. Jialal. Simvastatin (40 mg/day), adiponectin levels, and insulin sensitivity in subjects with the metabolic syndrome. Am. J. Cardiol. 100:1397–1399 (2007). doi:10.1016/j.amjcard.2007.06.028.PubMedCrossRefGoogle Scholar
  42. 42.
    I. Gouni-Berthold, H. K. Berthold, J. P. Chamberland, W. Krone, and C. S. Mantzoros. Short-term treatment with ezetimibe, simvastatin or their combination does not alter circulating adiponectin, resistin or leptin levels in healthy men. Clin. Endocrinol. (Oxf). 68:536–541 (2008). doi:10.1111/j.1365-2265.2007.03080.x.CrossRefGoogle Scholar
  43. 43.
    S. Sugiyama, H. Fukushima, K. Kugiyama, H. Maruyoshi, S. Kojima, T. Funahashi, T. Sakamoto, Y. Horibata, K. Watanabe, H. Koga, K. Sugamura, F. Otsuka, I. Shimomura, and H. Ogawa. Pravastatin improved glucose metabolism associated with increasing plasma adiponectin in patients with impaired glucose tolerance and coronary artery disease. Atherosclerosis. 194:e43–51 (2007). doi:10.1016/j.atherosclerosis.2006.08.023.PubMedCrossRefGoogle Scholar
  44. 44.
    W. Mauser, N. Perwitz, B. Meier, M. Fasshauer, and J. Klein. Direct adipotropic actions of atorvastatin: differentiation state-dependent induction of apoptosis, modulation of endocrine function, and inhibition of glucose uptake. Eur. J. Pharmacol. 564:37–46 (2007). doi:10.1016/j.ejphar.2007.02.024.PubMedCrossRefGoogle Scholar
  45. 45.
    J. Q. Li, S. P. Zhao, Q. Z. Li, Y. C. Cai, L. R. Wu, Y. Fang, and P. Li. Atorvastatin reduces plasminogen activator inhibitor-1 expression in adipose tissue of atherosclerotic rabbits. Clin. Chim. Acta. 370:57–62 (2006). doi:10.1016/j.cca.2006.01.024.PubMedCrossRefGoogle Scholar
  46. 46.
    C. S. Chu, K. T. Lee, M. Y. Lee, H. M. Su, W. C. Voon, S. H. Sheu, and W. T. Lai. Effects of rosiglitazone alone and in combination with atorvastatin on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Am. J. Cardiol. 97:646–650 (2006). doi:10.1016/j.amjcard.2005.09.101.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hai-yan Qu
    • 1
    • 2
  • Ya-wei Xiao
    • 1
  • Gui-hua Jiang
    • 1
  • Zhi-yun Wang
    • 1
  • Yun Zhang
    • 1
  • Mei Zhang
    • 1
  1. 1.The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public HealthShandong University Qilu HospitalJinanPeople’s Republic of China
  2. 2.Department of CardiologyShandong Provincial Chest HospitalJinanPeople’s Republic of China

Personalised recommendations