Pharmaceutical Research

, Volume 26, Issue 4, pp 865–871 | Cite as

Dermatopharmacokinetics: Factors Influencing Drug Clearance from the Stratum Corneum

  • Sara Nicoli
  • Annette L. Bunge
  • M. Begoña Delgado-Charro
  • Richard H. Guy
Research Paper



The dermatopharmacokinetic methodology, in which tape stripping of the stratum corneum (SC) is used to access the amount of drug accumulated in the skin barrier, has been proposed for the quantification of topical drug bioavailability. This investigation examined the clearance phase of a model drug from the SC after a short application of an infinite dose.


A saturated solution of ibuprofen in propylene glycol/water was applied to the forearm of human volunteers for 30 min. The formulation was then removed and the drug profile across the SC was assessed immediately, and over the next 4 h.


The clearance phase depends only on drug diffusivity in the SC. However, the expected, progressive “flattening” of the concentration profiles with increasing time post-formulation removal was not observed. It was subsequently deduced, using infrared spectroscopy, that the rapid percutaneous diffusion of propylene glycol, relative to ibuprofen, resulted in the transient maintenance of a saturated drug concentration at the SC surface even after removal of the original formulation.


The important role of formulation excipients in topical delivery is demonstrated, and the local disposition of cosolvents within the SC may impact significantly on drug dermatopharmacokinetics and local bioavailability.


clearance dermatopharmacokinetics infrared spectroscopy stratum corneum topical bioavailability 



We thank Dr. Sandra Wiedersberg for very helpful discussion and advice.


  1. 1.
    HHS, FDA, and CDER. Topical dermatological drug product NDAs and ANDAs—in vivo bioavailability, bioequivalence, in vitro release and associated studies Draft Guidance for Industry. (1998).Google Scholar
  2. 2.
    Y. N. Kalia, I. Alberti, A. Naik, and R. H. Guy. Assessment of topical bioavailability in vivo: the importance of stratum corneum thickness. Skin Pharmacol Appl Skin Physiol. 14(Suppl 1):82–86 (2001) doi: 10.1159/000056394.PubMedCrossRefGoogle Scholar
  3. 3.
    L. K. Pershing, J. L. Nelson, J. L. Corlett, S. P. Shrivastava, D. B. Hare, and V. P. Shah. Assessment of dermatopharmacokinetic approach in the bioequivalence determination of topical tretinoin gel products. J Am Acad Dermatol. 48:740–751 (2003) doi: 10.1067/mjd.2003.175.PubMedCrossRefGoogle Scholar
  4. 4.
    M. B. Reddy, A. L. Stinchcomb, R. H. Guy, and A. L. Bunge. Determining dermal absorption parameters in vivo from tape strip data. Pharm Res. 19:292–298 (2002) doi: 10.1023/A:1014443001802.PubMedCrossRefGoogle Scholar
  5. 5.
    V. P. Shah. IV-IVC for topically applied preparations—a critical evaluation. Eur J Pharm Biopharm. 60:09–14 (2005) doi: 10.1016/j.ejpb.2004.09.015.Google Scholar
  6. 6.
    E. Benfeldt, S. H. Hansen, A. Volund, T. Menne, and V. P. Shah. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method. J Invest Dermatol. 127:170–178 (2007) doi: 10.1038/sj.jid.5700495.PubMedCrossRefGoogle Scholar
  7. 7.
    M. Breternitz, M. Flach, J. Prassler, P. Elsner, and J. W. Fluhr. Acute barrier disruption by adhesive tapes is influenced by pressure, time and anatomical location: integrity and cohesion assessed by sequential tape stripping. A randomized, controlled study. Br J Dermatol. 156:231–240 (2007) doi: 10.1111/j.1365-2133.2006.07632.x.PubMedCrossRefGoogle Scholar
  8. 8.
    C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm Res. 23:1850–1856 (2006) doi: 10.1007/s11095-006-9011-8.PubMedCrossRefGoogle Scholar
  9. 9.
    C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 97(1):185–197 (2007).CrossRefGoogle Scholar
  10. 10.
    C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy. Dermatopharmacokinetic prediction of topical drug bioavailability in vivo. J Invest Dermatol. 127:887–894 (2007) doi: 10.1038/sj.jid.5700642.PubMedCrossRefGoogle Scholar
  11. 11.
    C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy. Ibuprofen transport into and through skin from topical formulations: in vitroin vivo comparison. J Invest Dermatol. 127:135–142 (2007) doi: 10.1038/sj.jid.5700491.PubMedCrossRefGoogle Scholar
  12. 12.
    I. Jakasa, M. M. Verberk, M. Esposito, J. D. Bos, and S. Kezic. Altered penetration of polyethylene glycols into uninvolved skin of atopic dermatitis patients. J Invest Dermatol. 127:129–134 (2007) doi: 10.1038/sj.jid.5700582.PubMedCrossRefGoogle Scholar
  13. 13.
    J. Lademann, A. Ilgevicius, O. Zurbau, H. D. Liess, S. Schanzer, H. J. Weigmann, C. Antoniou, R. V. Pelchrzim, and W. Sterry. Penetration studies of topically applied substances: optical determination of the amount of stratum corneum removed by tape stripping. J Biomed Opt. 11:054026 (2006) doi: 10.1117/1.2359466.PubMedCrossRefGoogle Scholar
  14. 14.
    B. N'Dri-Stempfer, W. C. Navidi, R. H. Guy, and A. L. Bunge. Improved Bioequivalence Assessment of Topical Dermatological Drug Products Using Dermatopharmacokinetics. Pharm Res (2008) doi: 10.1007/s11095-008-9742-9.
  15. 15.
    B. N'Dri-Stempfer, W. C. Navidi, R. H. Guy, and A. L. Bunge. Optimizing metrics for the assessment of bioequivalence between topical drug products. Pharm Res. 25:1621–1630 (2008) doi: 10.1007/s11095-008-9577-4.PubMedCrossRefGoogle Scholar
  16. 16.
    C. Pellanda, E. Ottiker, C. Strub, V. Figueiredo, T. Rufli, G. Imanidis, and C. Surber. Topical bioavailability of triamcinolone acetonide: effect of dose and application frequency. Arch Dermatol Res. 298:221–230 (2006) doi: 10.1007/s00403-006-0677-x.PubMedCrossRefGoogle Scholar
  17. 17.
    C. Pellanda, C. Strub, V. Figueiredo, T. Rufli, G. Imanidis, and C. Surber. Topical bioavailability of triamcinolone acetonide: effect of occlusion. Skin Pharmacol Physiol. 20:50–56 (2007) doi: 10.1159/000096172.PubMedCrossRefGoogle Scholar
  18. 18.
    S. Wiedersberg, C. S. Leopold, and R. H. Guy. Dermatopharmacokinetics of betamethasone 17-valerate: Influence of formulation viscosity and skin surface cleaning procedure. Eur J Pharm Biopharm (2008) doi: 10.1016/j.ejpb.2008.10.001.
  19. 19.
    S. Wiedersberg, A. Naik, C. S. Leopold, and R. H. Guy. Pharmacodynamics and dermatopharmacokinetics of betamethasone 17-valerate: assessment of topical bioavailability. Br J Dermatol (2008) doi: 10.1111/j.1365-2133.2008.08757.x.
  20. 20.
    Y. N. Kalia, I. Alberti, N. Sekkat, C. Curdy, A. Naik, and R. H. Guy. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharm Res. 17:1148–1150 (2000) doi: 10.1023/A:1026474200575.PubMedCrossRefGoogle Scholar
  21. 21.
    R. L. Andersonand, and J. M. Cassidy. Variation in physical dimensions and chemical composition of human stratum corneum. J Invest Dermatol. 61:30–32 (1973) doi: 10.1111/1523-1747.ep12674117.CrossRefGoogle Scholar
  22. 22.
    N. Higo, A. Naik, D. B. Bommannan, R. O. Potts, and R. H. Guy. Validation of reflectance infrared spectroscopy as a quantitative method to measure percutaneous absorption in vivo. Pharm Res. 10:1500–1506 (1993) doi: 10.1023/A:1018987612155.PubMedCrossRefGoogle Scholar
  23. 23.
    I. Alberti, Y. N. Kalia, A. Naik, J. Bonny, and R. H. Guy. Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int J Pharm. 219:11–19 (2001) doi: 10.1016/S0378-5173(01)00616-0.PubMedCrossRefGoogle Scholar
  24. 24.
    I. Alberti, Y. N. Kalia, A. Naik, J. D. Bonny, and R. H. Guy. In vivo assessment of enhanced topical delivery of terbinafine to human stratum corneum. J Control Release. 71:319–327 (2001) doi: 10.1016/S0168-3659(01)00244-9.PubMedCrossRefGoogle Scholar
  25. 25.
    V. H. Mak, R. O. Potts, and R. H. Guy. Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm Res. 7:835–841 (1990) doi: 10.1023/A:1015960815578.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Pellett, A. Watkinson, J. Hadgraft, and K. Brain. Comparison of permeability data from traditional diffusion cells and ATR-FTIR spectroscopy. Part II: determination of diffusional pathlengths in synthetic membranes and human stratum corneum. Int. J. Pharm. 154:217–227 (1997) doi: 10.1016/S0378-5173(97)00143-9.CrossRefGoogle Scholar
  27. 27.
    J. C. Tsai, M. J. Cappel, G. L. Flynn, N. D. Weiner, J. Kreuter, and J. J. Ferry. Drug and vehicle deposition from topical applications: use of in vitro mass balance technique with minoxidil solutions. J Pharm Sci. 81:736–743 (1992) doi: 10.1002/jps.2600810803.PubMedCrossRefGoogle Scholar
  28. 28.
    A. L. Stinchcomb, F. Pirot, G. D. Touraille, A. L. Bunge, and R. H. Guy. Chemical uptake into human stratum corneum in vivo from volatile and non-volatile solvents. Pharm Res. 16:1288–1293 (1999) doi: 10.1023/A:1014866001386.PubMedCrossRefGoogle Scholar
  29. 29.
    H. S. Carslaw, and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, Oxford, 1959, pp. 92–110.Google Scholar
  30. 30.
    I. Schneider, B. Dobner, R. Neubert, and W. Wohlrab. Evaluation of drug penetration into human skin ex vivo using branched fatty acids and propylene glycol. Int J Pharm. 145:187–196 (1996) doi: 10.1016/S0378-5173(96)04768-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sara Nicoli
    • 1
  • Annette L. Bunge
    • 2
  • M. Begoña Delgado-Charro
    • 3
  • Richard H. Guy
    • 3
  1. 1.Department of PharmacyUniversity of ParmaParmaItaly
  2. 2.Department of Chemical EngineeringColorado School of MinesGoldenUSA
  3. 3.Department of Pharmacy and PharmacologyUniversity of BathBathUK

Personalised recommendations