Pharmaceutical Research

, Volume 26, Issue 3, pp 657–666 | Cite as

Efficient siRNA Delivery with Non-viral Polymeric Vehicles

Expert Review

Abstract

Sequence-specific gene silencing using small interfering RNA (siRNA) provides a potent and specific method for gene expression, thus is now being evaluated in clinical trials as a novel therapeutic strategy. As a results, there has been a significant surge of interest in the application of siRNA in therapeutics as a means of silencing the specific gene function. However, for siRNA technology to be valuable and effective, the development of efficient siRNA delivery strategy is essential for improving biological activities such as stability, cellular uptake, sequence-specificity, devoid of nonspecific knockdown and toxic side effects. Accordingly, a number of delivery systems, both viral and nonviral, have been reported and some of them successfully used for the introduction of siRNA into cells both in vitro and in vivo. Here, we discuss the current understanding of synthetic siRNA delivery mechanism and strategies of siRNA delivery by non-viral polymeric vehicles which are currently used in vitro and in vivo.

KEY WORDS

cationic polymer gene therapy polymeric carrier small interfering RNA 

Notes

Acknowledgements

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A080919), the Nano-Biotechnology Project (Regenomics), Ministry of Science and Technology, Republic of Korea (850-20080090), and a grant from the National Institute of Health, USA (NIH, CA 107070).

References

  1. 1.
    D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Sah. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2:711–719 (2006). doi: 10.1038/nchembio839.PubMedCrossRefGoogle Scholar
  2. 2.
    A. de Fougerolles, H. P. Vornlocher, J. Maraganore, and J. Lieberman. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6:443–453 (2007). doi: 10.1038/nrd2310.PubMedCrossRefGoogle Scholar
  3. 3.
    R. K. Leung, and P. A. Whittaker. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107:222–239 (2005). doi: 10.1016/j.pharmthera.2005.03.004.PubMedCrossRefGoogle Scholar
  4. 4.
    G. L. Sen, and H. M. Blau. Argonaute 2/RISC resides in sites of mammalian decay known as cytoplasmic bodies. Nat. Cell Biol. 7:633–636 (2005). doi: 10.1038/ncb1265.PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Behlke. Progress towards in vivo use of siRNAs. Mol. Ther. 13:644–670 (2006). doi: 10.1016/j.ymthe.2006.01.001.PubMedCrossRefGoogle Scholar
  6. 6.
    D. H. Kim, and J. J. Rossi. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8:173–184 (2007). doi: 10.1038/nrg2006.PubMedCrossRefGoogle Scholar
  7. 7.
    D. R. Corey. Chemical modification: the key to clinical application of RNA interference? J. Clin. Invest. 117:3615–3622 (2007). doi: 10.1172/JCI33483.PubMedCrossRefGoogle Scholar
  8. 8.
    B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–466 (2005). doi: 10.1038/sj.gt.3302425.PubMedCrossRefGoogle Scholar
  9. 9.
    P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA. 84:7413–7417 (1987). doi: 10.1073/pnas.84.21.7413.PubMedCrossRefGoogle Scholar
  10. 10.
    E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997). doi: 10.1074/jbc.272.25.16010.PubMedCrossRefGoogle Scholar
  11. 11.
    A. L. Jackson, J. Burchard, D. Leake, A. Reynolds, J. Schelter, J. Guo, J. M. Johnson, L. Lim, J. Karpilow, K. Nichols, W. Marshall, A. Khvorova, and P. S. Linsley. Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA. 12:1197–1205 (2006). doi: 10.1261/rna.30706.PubMedCrossRefGoogle Scholar
  12. 12.
    D. S. Schwarz, G. Hutvagner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208 (2003). doi: 10.1016/S0092-8674(03)00759-1.PubMedCrossRefGoogle Scholar
  13. 13.
    A. Khvorova, A. Reynolds, and S. D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell. 115:209–216 (2003). doi: 10.1016/S0092-8674(03)00801-8.PubMedCrossRefGoogle Scholar
  14. 14.
    A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326–330 (2004). doi: 10.1038/nbt936.PubMedCrossRefGoogle Scholar
  15. 15.
    D. A. Braasch, S. Jensen, Y. Liu, K. Kaur, K. Arar, M. A. White, and D. R. Corey. RNA interference in mammalian cells by chemically modified RNA. Biochemistry. 42:7967–7975 (2003). doi: 10.1021/bi0343774.PubMedCrossRefGoogle Scholar
  16. 16.
    Y. L. Chiu, and T. M. Rana. siRNA function in RNAi: a chemical modification analysis. RNA. 9:1034–1048 (2003). doi: 10.1261/rna.5103703.PubMedCrossRefGoogle Scholar
  17. 17.
    M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589–595 (2003). doi: 10.1093/nar/gkg147.PubMedCrossRefGoogle Scholar
  18. 18.
    M. Rusckowski, T. Qu, A. Roskey, and S. Agrawal. Biodistribution and metabolism of a mixed backbone oligonucleotide (GEM 231) following single and multiple dose administration in mice. Antisense Nucleic Acid Drug Dev. 10:333–345 (2000).PubMedGoogle Scholar
  19. 19.
    H. Zhang, J. Cook, J. Nickel, R. Yu, K. Stecker, K. Myers, and N. M. Dean. Reduction of liver Fad expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat. Biotechnol. 18:862–867 (2000). doi: 10.1038/78475.PubMedCrossRefGoogle Scholar
  20. 20.
    A. M. Kawasaki, M. D. Casper, S. M. Freier, E. A. Lesnik, M. C. Zounes, L. L. Cummins, C. Gonzalez, and P. D. Cook. Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36:831–841 (1993). doi: 10.1021/jm00059a007.PubMedCrossRefGoogle Scholar
  21. 21.
    C. R. Allerson, N. Sioufi, R. Jarres, T. P. Prakash, N. Naik, A. Berdeja, L. Wanders, R. H. Griffey, E. E. Swayze, and B. Bhat. Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48:901–904 (2005). doi: 10.1021/jm049167j.PubMedCrossRefGoogle Scholar
  22. 22.
    Y. L. Chiu, A. Ali, C. Y. Chu, H. Cao, and T. M. Rana. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11:1165–1175 (2004). doi: 10.1016/j.chembiol.2004.06.006.PubMedCrossRefGoogle Scholar
  23. 23.
    J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, and H. P. Vornlocher. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432:173–178 (2004). doi: 10.1038/nature03121.PubMedCrossRefGoogle Scholar
  24. 24.
    S. H. Kim, J. H. Jeong, S. H. Lee, S. W. Kim, and T. G. Park. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Rel. 129:107–116 (2008). doi: 10.1016/j.jconrel.2008.03.008.CrossRefGoogle Scholar
  25. 25.
    M. Lee, and S. W. Kim. Polymeric gene carriers. Pharm. News. 9:407–415 (2002).Google Scholar
  26. 26.
    M. Lee, and S. W. Kim. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22:1–10 (2005). doi: 10.1007/s11095-004-9003-5.PubMedCrossRefGoogle Scholar
  27. 27.
    E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody mediated in vivo delivery of small interfering RNAs via cell surface receptors. Nat. Biotechnol. 23:709–714 (2005). doi: 10.1038/nbt1101.PubMedCrossRefGoogle Scholar
  28. 28.
    J. O. McNamara, E. R. Andrechek, Y. Wang, K. D. Viles, R. E. Rempel, E. Gilboa, B. A. Sullenger, and P. H. Giangrande. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24:1005–1015 (2006). doi: 10.1038/nbt1223.PubMedCrossRefGoogle Scholar
  29. 29.
    B. J. Hicke, and A. W. Stephens. Escort aptamers; a delivery service for diagnosis and therapy. J. Clin. Invest. 106:923–928 (2000). doi: 10.1172/JCI11324.PubMedCrossRefGoogle Scholar
  30. 30.
    M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener. Systemic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276:16464–16468 (2001). doi: 10.1074/jbc.M100347200.PubMedCrossRefGoogle Scholar
  31. 31.
    D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold. A tenascin-C aptamer identified by tumor cell SELEX: systemic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA. 100:15416–15421 (2003). doi: 10.1073/pnas.2136683100.PubMedCrossRefGoogle Scholar
  32. 32.
    K. N. Morris, K. B. Jensen, C. M. Julin, M. Weil, and L. Gold. High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. U. S. A. 95:2902–2907 (1998). doi: 10.1073/pnas.95.6.2902.PubMedCrossRefGoogle Scholar
  33. 33.
    T. C. Chu, K. Y. Twu, A. D. Ellington, and M. Levy. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34:e73 (2006). doi: 10.1093/nar/gkl388.PubMedCrossRefGoogle Scholar
  34. 34.
    S. Akhtar, M. D. Hughes, A. Khan, M. Bibby, M. Hussain, Q. Nawaz, J. Double and P. Sayyed. The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44:3–21 (2000). doi: 10.1016/S0169-409X(00)00080-6.PubMedCrossRefGoogle Scholar
  35. 35.
    M. D. Hughes, M. Hussain, Q. Nawaz, P. Sayyed, and S. Akhtar. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov. Today. 6:303–315 (2001). doi: 10.1016/S1359-6446(00)00326-3.PubMedCrossRefGoogle Scholar
  36. 36.
    I. R. Gilmore, S. P. Fox, A. J. Hollins, M. Sohail, and S. Akhtar. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J. Drug Target. 12:315–340 (2004). doi: 10.1080/10611860400006257.PubMedCrossRefGoogle Scholar
  37. 37.
    S. Kawakami, and M. Hashida. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab. Pharmacokinet. 22:142–151 (2007). doi: 10.2133/dmpk.22.142.PubMedCrossRefGoogle Scholar
  38. 38.
    O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethyleneimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995). doi: 10.1073/pnas.92.16.7297.PubMedCrossRefGoogle Scholar
  39. 39.
    A. Aigner. Delivery systems for the direct application of siRNAs to induce RNA interference(RNAi) in vivo. J. Biomed. Biotechnol. 4:71659 (2006).Google Scholar
  40. 40.
    D. Fischer, T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999). doi: 10.1023/A:1014861900478.PubMedCrossRefGoogle Scholar
  41. 41.
    P. Marschall, N. Malik, and Z. Larin. Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine. Gene Ther. 6:1634–1637 (1999). doi: 10.1038/sj.gt.3300975.PubMedCrossRefGoogle Scholar
  42. 42.
    W. T. Godbey, M. A. Barry, P. Saggau, K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J. Biomed. Mater. Res. 51:321–328 (2000). doi: 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R.PubMedCrossRefGoogle Scholar
  43. 43.
    A. V. Harpe, H. Petersen, Y. Li, and T. Kissel. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Rel. 69:309–322 (2000). doi: 10.1016/S0168-3659(00)00317-5.CrossRefGoogle Scholar
  44. 44.
    K. Kunath, A. V. Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Rel. 89:113–125 (2003). doi: 10.1016/S0168-3659(03)00076-2.CrossRefGoogle Scholar
  45. 45.
    M. L. Read, S. Singh, Z. Ahmed, M. Stevenson, S. S. Briggs, D. Oupicky, L. B. Barrett, R. Spice, M. Kendall, M. Berry, J. A. Preece, A. Logan, and L. W. Seymour. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86 (2005). doi: 10.1093/nar/gni085.PubMedCrossRefGoogle Scholar
  46. 46.
    M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, and A. M. Klibanov. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U. S. A. 102:5679–5684 (2005). doi: 10.1073/pnas.0502067102.PubMedCrossRefGoogle Scholar
  47. 47.
    A. C. Grayson, A. M. Doody, and D. Putnam. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23:1868–1876 (2006). doi: 10.1007/s11095-006-9009-2.PubMedCrossRefGoogle Scholar
  48. 48.
    A. Zintchenko, A. Philipp, A. Dehshahri, and E. Wagner. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 19:1448–1455 (2008). doi: 10.1021/bc800065f.PubMedCrossRefGoogle Scholar
  49. 49.
    C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Rel. 80:273–282 (2002). doi: 10.1016/S0168-3659(01)00547-8.CrossRefGoogle Scholar
  50. 50.
    S. Han, R. I. Mahato, and S. W. Kim. Water-soluble lipopolymer for gene delivery. Bioconjugate Chem. 12:337–345 (2001). doi: 10.1021/bc000120w.CrossRefGoogle Scholar
  51. 51.
    J. W. Yockman, A. Maheshwari, S. Han, and S. W. Kim. Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J. Control. Rel. 87:177–186 (2003). doi: 10.1016/S0168-3659(02)00362-0.CrossRefGoogle Scholar
  52. 52.
    M. Lee, J. Rentz, S. Han, D. A. Bull, and S. W. Kim. Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther. 10:585–593 (2003). doi: 10.1038/sj.gt.3301938.PubMedCrossRefGoogle Scholar
  53. 53.
    M. Lee, J. Rentz, M. Bikram, S. Han, D. A. Bull, and S. W. Kim. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10:1535–1542 (2003). doi: 10.1038/sj.gt.3302034.PubMedCrossRefGoogle Scholar
  54. 54.
    W. J. Kim, C. W. Chang, M. Lee, and S. W. Kim. Efficient siRNA delivery using water soluble lipopolymer for anti-angiogenic gene therapy. J. Control. Rel. 118:357–363 (2007). doi: 10.1016/j.jconrel.2006.12.026.CrossRefGoogle Scholar
  55. 55.
    J. H. Jeong, L. V. Christensen, J. W. Yockman, Z. Zhong, J. F. Engbersen, W. J. Kim, J. Feijen, and S. W. Kim. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 28:1912–1917 (2007). doi: 10.1016/j.biomaterials.2006.12.019.CrossRefGoogle Scholar
  56. 56.
    M. Breunig, C. Hozsa, C. U. Lungwitz, K. Watanabe, I. Umeda, H. Kato, and A. Goepferich. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J. Control. Rel. 130:57–63 (2008). doi: 10.1016/j.jconrel.2008.05.016.CrossRefGoogle Scholar
  57. 57.
    D. W. Bartlett, and M. E. Davis. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99:975–985 (2008). doi: 10.1002/bit.21668.PubMedCrossRefGoogle Scholar
  58. 58.
    S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in murine model of metastatic Ewing’s sarcoma. Cancer Res. 65:8984–8992 (2005). doi: 10.1158/0008-5472.CAN-05-0565.PubMedCrossRefGoogle Scholar
  59. 59.
    J. D. Heidel, Z. Yu, J. Y. Liu, S. M. Rele, Y. Liang, R. K. Zeidan, D. J. Kornbrust, and M. E. Davis. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104:5715–5721 (2007). doi: 10.1073/pnas.0701458104.PubMedCrossRefGoogle Scholar
  60. 60.
    U. N. Verma, R. M. Surabhi, A. Schmaltieg, C. Becerra, and R. B. Gaynor. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res. 9:1291–1300 (2003).PubMedGoogle Scholar
  61. 61.
    A. S. Arnold, Y. L. Tang, K. Qian, L. Shen, V. Valencia, M. I. Phillips, and Y. C. Zhang. Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. J. Hypertens. 25:197–205 (2007). doi: 10.1097/01.hjh.0000254374.73241.ab.PubMedCrossRefGoogle Scholar
  62. 62.
    T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Röhl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manohara, H. P. Vornlocher, and I. MacLachlan. RNAi-mediated gene silencing in non-human primates. Nature. 441:111–114 (2006). doi: 10.1038/nature04688.PubMedCrossRefGoogle Scholar
  63. 63.
    T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277:2437–2443 (2002). doi: 10.1074/jbc.M110017200.PubMedCrossRefGoogle Scholar
  64. 64.
    V. P. Torchilin, R. Rammohan, V. Weissig, and T. S. Levchenko. Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 98:8786–8791 (2001). doi: 10.1073/pnas.151247498.PubMedCrossRefGoogle Scholar
  65. 65.
    J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003). doi: 10.1074/jbc.M209548200.PubMedCrossRefGoogle Scholar
  66. 66.
    J. A. Lecifert, S. Harkins, and J. L. Whitton. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 9:1422–1428 (2002). doi: 10.1038/sj.gt.3301819.CrossRefGoogle Scholar
  67. 67.
    D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269:10444–10450 (1994).PubMedGoogle Scholar
  68. 68.
    M. Pooga, C. Kut, M. Kihlmark, M. Hällbrink, S. Fernaeus, R. Raid, T. Land, E. Hallberg, T. Bartfai, and U. Langel. Cellular translocation of proteins by transportan. FASEB J. 15:1451–1453 (2001).PubMedGoogle Scholar
  69. 69.
    S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276:5836–5840 (2001). doi: 10.1074/jbc.M007540200.PubMedCrossRefGoogle Scholar
  70. 70.
    A. Muratovska, and M. R. Eccles. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68 (2004). doi: 10.1016/S0014-5793(03)01505-9.PubMedCrossRefGoogle Scholar
  71. 71.
    T. J. Davidson, S. Harel, V. A. Arboleda, G. F. Prunell, M. L. Shelanski, L. A. Greene, and C. M. Troy. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J. Neurosci. 24:10040–10046 (2004). doi: 10.1523/JNEUROSCI.3643-04.2004.PubMedCrossRefGoogle Scholar
  72. 72.
    J. J. Turner, S. Jones, M. M. Fabani, G. Ivanova, A. A. Arzumanov, and M. J. Gait. RNA targeting 1with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis. 38:1–7 (2007). doi: 10.1016/j.bcmd.2006.10.003.PubMedCrossRefGoogle Scholar
  73. 73.
    S. W. Jones, R. Christison, K. Bundell, C. J. Voyce, S. M. Brockbank, P. Newham, and M. A. Lindsay. Characterization of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145:1093–1102 (2005). doi: 10.1038/sj.bjp.0706279.PubMedCrossRefGoogle Scholar
  74. 74.
    W. J. Kim, L. V. Christensen, S. Jo, J. W. Yockman, J. H. Jeong, Y. H. Kim, and S. W. Kim. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14:343–350 (2006). doi: 10.1016/j.ymthe.2006.03.022.PubMedCrossRefGoogle Scholar
  75. 75.
    M. Hashida, M. Nishikawa, F. Yamashita, and Y. Takakura. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug Deliv. Rev. 52:187–196 (2001). doi: 10.1016/S0169-409X(01)00209-5.PubMedCrossRefGoogle Scholar
  76. 76.
    Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-l-lysine as hepatoma cell-targeted gene carrier. Bioconjug. Chem. 9:708–718 (1998). doi: 10.1021/bc980017v.PubMedCrossRefGoogle Scholar
  77. 77.
    T. Bettinger, J. S. Remy, and P. Erbacher. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug. Chem. 10:558–561 (1999). doi: 10.1021/bc990006h.PubMedCrossRefGoogle Scholar
  78. 78.
    K. Sagara, and S. W. Kim. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J. Control. Rel. 79:271–281 (2002). doi: 10.1016/S0168-3659(01)00555-7.CrossRefGoogle Scholar
  79. 79.
    M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005). doi: 10.1021/ja044941d.PubMedCrossRefGoogle Scholar
  80. 80.
    J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 73:2432–2443 (1994). doi: 10.1002/1097-0142(19940501)73:9<2432::AID-CNCR2820730929>3.0.CO;2-S.PubMedCrossRefGoogle Scholar
  81. 81.
    S. Wang, R. J. Lee, G. Cauchon, D. G. Gorenstein, and P. S. Low. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl. Acad. Sci. U. S. A. 92:3318–3322 (1995). doi: 10.1073/pnas.92.8.3318.PubMedCrossRefGoogle Scholar
  82. 82.
    J. J. Turek, C. P. Leamon, and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).PubMedGoogle Scholar
  83. 83.
    K. A. Mislick, J. D. Baldeschwieler, J. F. Kayyem, and T. J. Meade. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug. Chem. 6:512–515 (1995). doi: 10.1021/bc00035a002.PubMedCrossRefGoogle Scholar
  84. 84.
    S. H. Kim, H. J. Mok, J. M. Jeong, S. W. Kim, and T. G. Park. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL. Bioconjug. Chem. 17:241–244 (2006). doi: 10.1021/bc050289f.PubMedCrossRefGoogle Scholar
  85. 85.
    S. H. Kim, H. J. Jeong, C. K. Cho, S. W. Kim, and T. G. Park. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J. Control. Rel. 104:223–232 (2005). doi: 10.1016/j.jconrel.2005.02.006.CrossRefGoogle Scholar
  86. 86.
    P. C. Brooks, R. A. Clark, and D. A. Cheresh. Requirement of vascular integrin alpha 5 beta 3 for angiogenesis. Science. 264:569–571 (1994). doi: 10.1126/science.7512751.PubMedCrossRefGoogle Scholar
  87. 87.
    D. A. Sipkins, D. A. Cheresh, M. R. Kazemi, L. M. Nevin, M. D. Bednarski, and K. C. Li. Detection of tumor angiogenesis in vivo by alpha 5 beta3-targeted magnetic resonance imaging. Nat. Med. 4:623–626 (1998). doi: 10.1038/nm0598-623.PubMedCrossRefGoogle Scholar
  88. 88.
    W. J. Kim, J. M. Yockman, M. Lee, J. H. Jeong, Y. H. Kim, and S. W. Kim. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J. Control. Rel. 106:224–234 (2005). doi: 10.1016/j.jconrel.2005.04.016.CrossRefGoogle Scholar
  89. 89.
    W. J. Kim, J. M. Yockman, J. H. Jeong, L. V. Christensen, M. Lee, Y. H. Kim, and S. W. Kim. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J. Control. Rel. 114:381–388 (2006). doi: 10.1016/j.jconrel.2006.05.029.CrossRefGoogle Scholar
  90. 90.
    R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32: e149 (2004). doi: 10.1093/nar/gnh140.PubMedCrossRefGoogle Scholar
  91. 91.
    P. Aisen. Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36:2137–2143 (2004). doi: 10.1016/j.biocel.2004.02.007.PubMedCrossRefGoogle Scholar
  92. 92.
    K. A. Howard, U. L. Rahbek, X. Liu, C. K. Damgaard, S. Z. Glud, M. O. Andersen, M. B. Hovgaard, A. Schmitz, J. R. Nyengaard, F. Besenbacher, and J. Kjems. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14:476–484 (2006). doi: 10.1016/j.ymthe.2006.04.010.PubMedCrossRefGoogle Scholar
  93. 93.
    J. Y. Pille, H. Li, E. Blot, J. R. Bertrand, L. L. Pritchard, P. Opolon, A. Maksimenko, H. Lu, J. P. Vannier, J. Soria, C. Malvy, and C. Soria. Intravenous delivery of anti-rhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Human Gene Ther. 17:1019–1026 (2006). doi: 10.1089/hum.2006.17.1019.CrossRefGoogle Scholar
  94. 94.
    A. Khan, M. Benboubetra, P. Z. Sayyed, K. W. Ng, S. Fox, G. Beck, I. F. Benter, and S. Akhtar. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target. 12:393–404 (2004). doi: 10.1080/10611860400003858.PubMedCrossRefGoogle Scholar
  95. 95.
    H. Kang, R. DeLong, M. H. Fisher, and R. L. Juliano. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res. 22:2099–2106 (2005). doi: 10.1007/s11095-005-8330-5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryPohang University of Science and TechnologyPohangSouth Korea
  2. 2.Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations