Pharmaceutical Research

, Volume 26, Issue 2, pp 449–458 | Cite as

Cellular Phototoxicity Evoked Through the Inhibition of Human ABC Transporter ABCG2 by Cyclin-dependent Kinase Inhibitors In vitro

  • Ran An
  • Yuichiro Hagiya
  • Ai Tamura
  • Shanshan Li
  • Hikaru Saito
  • Daisuke Tokushima
  • Toshihisa Ishikawa
Research Paper

Abstract

Purpose

The physiological importance of the human ATP-binding cassette (ABC) transporter ABCG2 has been recognized with regard to porphyrin-mediated photosensitivity. Functional impairment owing to inhibition of ABCG2 by drugs or its genetic polymorphisms may lead to the disruption of porphyrin homeostasis, which in turn causes cellular toxicity.

Materials and Methods

We evaluated the impact on photosensitivity of the inhibition by cyclin-dependent kinase (CDK) inhibitors of ABCG2 function. For this purpose, we established new methods for photosensitivity assays by using Flp-In-293 cells and plasma membrane vesicles prepared from Sf9 insect cells. With the new methods, we subsequently tested CDK inhibitors, i.e., purvalanol A, WHI-P180, bohemine, roscovitine, and olomoucine.

Results

Among CDK inhibitors tested, purvalanol A was found to be the most potent inhibitor (IC50 = 3.5 μM) for ABCG2-mediated hematoporphyrin transport. At a concentration of 2.5 μM, it evoked the photosensitivity of ABCG2-expressing Flp-In-293 cells treated with pheophorbide a. WHI-P180 moderately inhibited ABCG2 function, exhibiting weak phototoxicity. In contrast, the phototoxicity of bohemine, roscovitine, and olomoucine were minimal in our assay system.

Conclusions

It is suggested that the planar structure is an important factor for interactions with the active site of ABCG2. The present study provides a new approach to studying drug-induced phototoxicity in vitro.

KEY WORDS

ABCG2 (BCRP/MXR) cyclin-dependent kinase inhibitor pheophorbide a phototoxicity porphyrin 

Abbreviations

ABC

ATP-binding cassette

BCRP

breast cancer resistance protein

CDK

cyclin-dependent kinase

D-MEM

Dulbecco’s modified Eagle’s medium

EDTA

ethylenediaminetetraacetic acid

EGFR

epidermal growth factor receptor

EGTA

ethyleneglycol-bis(2-aminoethyl)-N,N,N′,N′-tetracetic acid

EKI-785

N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide

FCS

fetal calf serum

HEPES

2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid

HOMO

highest occupied molecular orbital

IC50

concentration leading to a 50%-inhibition

Km

Michaelis–Menten constant

MXR

mitoxantrone resistance

MO

molecular orbital

QSAR

quantitative structure-activity relationship

Tris

tris(hydroxymethyl)aminomethane

References

  1. 1.
    J. W. Jonker, S. Musters, M. L. Vlaming, T. Plosch, K. E. Gooijert, M. J. Hillebrand, H. Rosing, J. H. Beijnen, H. J. Verkade, and A. H. Schinkel. Breast cancer resistance protein (Bcrp1/Abcg2) is expressed in the harderian gland and mediates transport of conjugated protoporphyrin IX. Am. J. Physiol. Cell. Physiol. 292:C2204–2212 (2007). doi:10.1152/ajpcell.00359.2006.PubMedCrossRefGoogle Scholar
  2. 2.
    J. W. Jonker, M. Buitelaar, E. Wagenaar, M. A. Van Der Valk, G. L. Scheffer, R. J. Scheper, T. Plosch, F. Kuipers, R. P. Elferink, H. Rosing, J. H. Beijnen, and A. H. Schinkel. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl. Acad. Sci. U.S.A. 99:15649–15654 (2002). doi:10.1073/pnas.202607599.PubMedCrossRefGoogle Scholar
  3. 3.
    A. Tamura, M. Watanabe, H. Saito, H. Nakagawa, T. Kamachi, I. Okura, and T. Ishikawa. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol. Pharmacol. 70:287–296 (2006).PubMedGoogle Scholar
  4. 4.
    A. Tamura, Y. Onishi, R. An, S. Koshiba, K. Wakabayashi, K. Hoshijima, W. Priebe, T. Yoshida, S. Kometani, T. Matsubara, K. Mikuriya, and T. Ishikawa. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab. Pharmacokinet. 22:428–440 (2007). doi:10.2133/dmpk.22.428.PubMedCrossRefGoogle Scholar
  5. 5.
    R. Allikmets, L. M. Schriml, A. Hutchinson, V. Romano-Spica, and M. Dean. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58:5337–5339 (1998).PubMedGoogle Scholar
  6. 6.
    L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA. 95:15665–15670 (1998). doi:10.1073/pnas.95.26.15665.PubMedCrossRefGoogle Scholar
  7. 7.
    K. Miyake, L. Mickley, T. Litman, Z. Zhan, R. Robey, B. Cristensen, M. Brangi, L. Greenberger, M. Dean, T. Fojo, and S. E. Bates. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13 (1999).PubMedGoogle Scholar
  8. 8.
    M. Maliepaard, M. A. van Gastelen, L. A. de Jong, D. Pluim, R. C. van Waardenburg, M. C. Ruevekamp-Helmers, B. G. Floot, and J. H. Schellens. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 59:4559–4563 (1999).PubMedGoogle Scholar
  9. 9.
    D. D. Ross, W. Yang, L. V. Abruzzo, W. S. Dalton, E. Schneider, H. Lage, M. Dietel, L. Greenberger, S. P. Cole, and L. A. Doyle. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J. Natl. Cancer Inst. 91:429–433 (1999). doi:10.1093/jnci/91.5.429.PubMedCrossRefGoogle Scholar
  10. 10.
    M. Brangi, T. Litman, M. Ciotti, K. Nishiyama, G. Kohlhagen, C. Takimoto, R. Robey, Y. Pommier, T. Fojo, and S. E. Bates. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 59:5938–5946 (1999).PubMedGoogle Scholar
  11. 11.
    S. Kawabata, M. Oka, K. Shiozawa, K. Tsukamoto, K. Nakatomi, H. Soda, M. Fukuda, Y. Ikegami, K. Sugahara, Y. Yamada, S. Kamihira, L. A. Doyle, D. D. Ross, and S. Kohno. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem. Biophys. Res. Commun. 280:1216–1223 (2001). doi:10.1006/bbrc.2001.4267.PubMedCrossRefGoogle Scholar
  12. 12.
    S. Koshiba, R. An, H. Saito, K. Wakabayashi, A. Tamura, and T. Ishikawa. Human ABC transporters ABCG2 (BCRP) and ABCG4. Xenobiotica 38:863–888(2008).Google Scholar
  13. 13.
    P. Krishnamurthy, T. Xie, and J. D. Schuetz. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol. Ther. 114:345–358 (2007). doi:10.1016/j.pharmthera.2007.02.001.PubMedCrossRefGoogle Scholar
  14. 14.
    K. Wakabayashi, A. Tamura, H. Saito, Y. Onishi, and T. Ishikawa. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab. Rev. 38:371–391 (2006). doi:10.1080/03602530600727947.PubMedCrossRefGoogle Scholar
  15. 15.
    P. Rousselot, J. Larghero, E. Raffoux, F. Calvo, M. Tulliez, S. Giraudier, and M. Rybojad. Photosensitization in chronic myelogenous leukaemia patients treated with imatinib mesylate. Br. J. Haematol. 120:1091–1092 (2003). doi:10.1046/j.1365-2141.2003.04208_3.x.PubMedCrossRefGoogle Scholar
  16. 16.
    V. Brazzelli, F. Prestinari, T. Barbagallo, C. Rona, E. Orlandi, F. Passamonti, F. Locatelli, M. Zecca, S. Villani, and G. Borroni. A long-term time course of colorimetric assessment of the effects of imatinib mesylate on skin pigmentation: a study of five patients. J. Eur. Acad. Dermatol. Venereol. 21:384–387 (2007). doi:10.1111/j.1468-3083.2006.01981.x.PubMedCrossRefGoogle Scholar
  17. 17.
    C. Ozvegy-Laczka, T. Hegedus, G. Varady, O. Ujhelly, J. D. Schuetz, A. Varadi, G. Keri, L. Orfi, K. Nemet, and B. Sarkadi. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 65:1485–1495 (2004). doi:10.1124/mol.65.6.1485.PubMedCrossRefGoogle Scholar
  18. 18.
    H. Saito, H. Hirano, H. Nakagawa, T. Fukami, K. Oosumi, K. Murakami, H. Kimura, T. Kouchi, M. Konomi, E. Tao, N. Tsujikawa, S. Tarui, M. Nagakura, M. Osumi, and T. Ishikawa. A new strategy of high-speed screening and quantitative structure–activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317:1114–1124 (2006). doi:10.1124/jpet.105.099036.PubMedCrossRefGoogle Scholar
  19. 19.
    J. Dancey, and E. A. Sausville. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov. 2:296–313 (2003). doi:10.1038/nrd1066.PubMedCrossRefGoogle Scholar
  20. 20.
    P. M. Nurse. Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci. Rep. 22:487–499 (2002). doi:10.1023/A:1022017701871.PubMedCrossRefGoogle Scholar
  21. 21.
    P. L. Porter, K. E. Malone, P. J. Heagerty, G. M. Alexander, L. A. Gatti, E. J. Firpo, J. R. Daling, and J. M. Roberts. Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Med. 3:222–225 (1997). doi:10.1038/nm0297-222.PubMedCrossRefGoogle Scholar
  22. 22.
    J. Tsihlias, L. Kapusta, and J. Slingerland. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med. 50:401–423 (1999). doi:10.1146/annurev.med.50.1.401.PubMedCrossRefGoogle Scholar
  23. 23.
    A. Tamura, K. Wakabayashi, Y. Onishi, H. Nakagawa, M. Tsuji, Y. Matsuda, and T. Ishikawa. Genetic polymorphisms of human ABC transporter ABCG2: development of the standard method for functional validation of SNPs by using the Flp recombinase system. J. Exp. Ther. Oncol. 6:1–11 (2006).PubMedGoogle Scholar
  24. 24.
    A. Tamura, K. Wakabayashi, Y. Onishi, M. Takeda, Y. Ikegami, S. Sawada, M. Tsuji, Y. Matsuda, and T. Ishikawa. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci. 98:231–239 (2007). doi:10.1111/j.1349-7006.2006.00371.x.PubMedCrossRefGoogle Scholar
  25. 25.
    K. Wakabayashi, H. Nakagawa, A. Tamura, S. Koshiba, K. Hoshijima, M. Komada, and T. Ishikawa. Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. J. Biol. Chem. 282:27841–27846 (2007). doi:10.1074/jbc.C700133200.PubMedCrossRefGoogle Scholar
  26. 26.
    M. E. Noble, J. A. Endicott, and L. N. Johnson. Protein kinase inhibitors: insights into drug design from structure. Science. 303:1800–1805 (2004). doi:10.1126/science.1095920.PubMedCrossRefGoogle Scholar
  27. 27.
    N. B. Elkind, Z. Szentpetery, A. Apati, C. Ozvegy-Laczka, G. Varady, O. Ujhelly, K. Szabo, L. Homolya, A. Varadi, L. Buday, G. Keri, K. Nemet, and B. Sarkadi. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res. 65:1770–1777 (2005). doi:10.1158/0008-5472.CAN-04-3303.PubMedCrossRefGoogle Scholar
  28. 28.
    D. E. MacCallum, J. Melville, S. Frame, K. Watt, S. Anderson, A. Gianella-Borradori, D. P. Lane, and S. R. Green. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res. 65:5399–5407 (2005). doi:10.1158/0008-5472.CAN-05-0233.PubMedCrossRefGoogle Scholar
  29. 29.
    H. Saito, H. Hirano, and T. Ishikawa. High-speed screening and quantitative SAR analysis of human ABC transporter ABCG2 for molecular modeling of anticancer drugs to circumvent multidrug resistance. Mini Rev. Med. Chem. 7:1009–1018 (2007). doi:10.2174/138955707782110169.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ran An
    • 1
  • Yuichiro Hagiya
    • 1
  • Ai Tamura
    • 1
  • Shanshan Li
    • 1
  • Hikaru Saito
    • 1
  • Daisuke Tokushima
    • 2
  • Toshihisa Ishikawa
    • 1
  1. 1.Department of Biomolecular Engineering, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
  2. 2.NEC CorporationTokyoJapan

Personalised recommendations