Pharmaceutical Research

, Volume 25, Issue 12, pp 2924–2936 | Cite as

Polyplex Micelles from Triblock Copolymers Composed of Tandemly Aligned Segments with Biocompatible, Endosomal Escaping, and DNA-Condensing Functions for Systemic Gene Delivery to Pancreatic Tumor Tissue

  • Kanjiro Miyata
  • Makoto Oba
  • Mitsunobu R. Kano
  • Shigeto Fukushima
  • Yelena Vachutinsky
  • Muri Han
  • Hiroyuki Koyama
  • Kohei Miyazono
  • Nobuhiro Nishiyama
  • Kazunori KataokaEmail author
Research Paper



For systemic gene delivery to pancreatic tumor tissues, we prepared a three-layered polyplex micelle equipped with biocompatibility, efficient endosomal escape, and pDNA condensation functions from three components tandemly aligned; poly(ethylene glycol) (PEG), a poly(aspartamide) derivative with a 1,2-diaminoethane moiety (PAsp(DET)), and poly(l-lysine).

Materials and Methods

The size and in vitro transfection efficacy of the polyplex micelles were determined by dynamic light scattering (DLS) and luciferase assay, respectively. The systemic gene delivery with the polyplex micelles was evaluated from enhanced green fluorescence protein (EGFP) expression in the tumor tissues.


The polyplex micelles were approximately 80 nm in size and had one order of magnitude higher in vitro transfection efficacy than that of a diblock copolymer as a control. With the aid of transforming growth factor (TGF)-β type I receptor (TβR-1) inhibitor, which enhances accumulation of macromolecular drugs in tumor tissues, the polyplex micelle from the triblock copolymer showed significant EGFP expression in the pancreatic tumor (BxPC3) tissues, mainly in the stromal regions including the vascular endothelial cells and fibroblasts.


The three-layered polyplex micelles were confirmed to be an effective gene delivery system to subcutaneously implanted pancreatic tumor tissues through systemic administration.


gene delivery PEG polyplex micelle TGF-β inhibitor triblock copolymer 



This work was financially supported by the Core Research Program for Evolutional Science and Technology (CREST) from the Japan Science and Technology Corporation (JST) as well as by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).


  1. 1.
    Wiley (2007) Gene Therapy Clinical Trials Worldwide, provided by the J. Gene Med. (accessed 17/01/08)
  2. 2.
    D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4:581–593 (2005) doi: 10.1038/nrd1775.PubMedCrossRefGoogle Scholar
  3. 3.
    E. Mastrobattista, M. A. E. M. van der Aa, W. E. Hennink, and D. J. A. Crommelin. Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 5:115–121 (2006) doi: 10.1038/nrd1960.PubMedCrossRefGoogle Scholar
  4. 4.
    E. Wagner. Strategies to improve DNA polyplexes for in vivo gene transfer: Will “artificial viruses” be the answer? Pharm. Res. 21:8–14 (2004) doi: 10.1023/B:PHAM.0000012146.04068.56.PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Kakizawa, and K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54:203–222 (2002) doi: 10.1016/S0169-409X(02)00017-0.PubMedCrossRefGoogle Scholar
  6. 6.
    S. Katayose, and K. Kataoka. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer. Bioconjugate Chem. 8:702–707 (1997) doi: 10.1021/bc9701306.CrossRefGoogle Scholar
  7. 7.
    M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulbrich, O. Nazarova, and L. W. Seymour. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum. Gene. Ther. 10:2123–2133 (1996) doi: 10.1089/hum.1996.7.17-2123.CrossRefGoogle Scholar
  8. 8.
    Y. H. Choi, F. Liu, J. Kim, Y. K. Choi, J. S. Park, and S. W. Kim. Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J. Control. Release. 54:39–48 (1998) doi: 10.1016/S0168–3659(97)00174–0.PubMedCrossRefGoogle Scholar
  9. 9.
    K. Itaka, A. Harada, K. Nakamura, H. Kawaguchi, and K. Kataoka. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions. Biomacromolecules. 3:841–845 (2002) doi: 10.1021/bm025527d.PubMedCrossRefGoogle Scholar
  10. 10.
    M. Harada-Shiba, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, and K. Kataoka. Polyion complex micelles as a vector in gene therapy—pharmacokinetics and in vivo gene transfer. Gene. Ther. 9:407–414 (2002) doi: 10.1038/ Scholar
  11. 11.
    O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995) doi: 10.1073/pnas.92.16.7297.PubMedCrossRefGoogle Scholar
  12. 12.
    M. Neu, D. Fischer, and T. Kissel. Recent advances in rational gene transfer vector design based on poly(ethylenimine) and its derivatives. J. Gene Med. 7:992–1009 (2005) doi: 10.1002/jgm.773.PubMedCrossRefGoogle Scholar
  13. 13.
    N. Kanayama, S. Fukushima, N. Nishiyama, K. Itaka, W.-D. Jang, K. Miyata, Y. Yamasaki, U. Chung, and K. Kataoka. A PEG-based biocompatible block catiomer with high buffering capacity for the construction of polyplex micelles showing efficient gene transfer toward primary cells. Chem. Med. Chem. 1:439–444 (2006) doi: 10.1002/cmdc.200600008.PubMedGoogle Scholar
  14. 14.
    K. Masago, K. Itaka, N. Nishiyama, U. Chung, and K. Kataoka. Gene delivery with biocompatible cationic polymer: pharmacogenomic analysis on cell bioactivity. Biomaterials. 28:5169–5175 (2007) doi: 10.1016/j.biomaterials.2007.07.019.PubMedCrossRefGoogle Scholar
  15. 15.
    M. Han, Y. Bae, N. Nishiyama, K. Miyata, M. Oba, and K. Kataoka. Transfection study using multicellular tumor spheroids for screening non-viral polymeric gene vectors with low cytotoxicity and high transfection efficiencies. J. Control Release. 121:38–48 (2007a) doi: 10.1016/j.jconrel.2007.05.012.PubMedCrossRefGoogle Scholar
  16. 16.
    M. Han, Y. Bae, N. Nishiyama, and K. Kataoka. Gene delivery with poly(amino acid)-based block catiomer polyplex micelles against multicellular tumor spheroid. Abstracts of 13th International Symposium on Recent Advances in Drug Delivery Systems, Salt Lake City, UT, (2007b), pp. 128.Google Scholar
  17. 17.
    D. Akagi, M. Oba, H. Koyama, N. Nishiyama, S. Fukushima, T. Miyata, H. Nagawa, and K. Kataoka. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene. Ther. 14:1029–1038 (2007) doi: 10.1038/ Scholar
  18. 18.
    K. Itaka, S. Ohba, K. Miyata, H. Kawaguchi, K. Nakamura, T. Takato, U. Chung, and K. Kataoka. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol. Ther. 15:1655–1662 (2007) doi: 10.1038/ Scholar
  19. 19.
    K. Miyata, S. Fukushima, N. Nishiyama, Y. Yamasaki, and K. Kataoka. PEG-based block catiomers possessing DNA anchoring and endosomal escaping functions to form polyplex micelles with improved stability and high transfection efficacy. J. Control Release. 122:252–260 (2007) doi: 10.1016/j.jconrel.2007.06.020.PubMedCrossRefGoogle Scholar
  20. 20.
    S. Fukushima, K. Miyata, N. Nishiyama, N. Kanayama, Y. Yamasaki, and K. Kataoka. PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J. Am. Chem. Soc. 127:2810–2811 (2005) doi: 10.1021/ja0440506.PubMedCrossRefGoogle Scholar
  21. 21.
    M. R. Kano, Y. Bae, C. Iwata, Y. Morishita, M. Yashiro, M. Oka, T. Fujii, A. Komuro, K. Kiyono, M. Kamiishi, K. Hirakawa, Y. Ouchi, N. Nishiyama, K. Kataoka, and K. Miyazono. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc. Natl. Acad. Sci. U. S. A. 104:3460–3465 (2007) doi: 10.1073/pnas.0611660104.PubMedCrossRefGoogle Scholar
  22. 22.
    W. H. Daly, and D. Poche. The preparation of N-carboxyanhydrides of alpha-amino-acids using bis(trichloromethyl)carbonate. Tetrahedron Lett. 29:5859–5862 (1988) doi: 10.1016/S0040-4039(00)82209-1.CrossRefGoogle Scholar
  23. 23.
    A. Koide, A. Kishimura, K. Osada, W. -D. Jang, Y. Yamasaki, and K. Kataoka. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc. 128:5988–5989 (2006) doi: 10.1021/ja057993r.PubMedCrossRefGoogle Scholar
  24. 24.
    A. Harada, S. Cammas, and K. Kataoka. Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules. 29:6183–6188 (1996) doi: 10.1021/ma960487p.CrossRefGoogle Scholar
  25. 25.
    A. Harada, and K. Kataoka. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules. 28:5294–5299 (1995) doi: 10.1021/ma00119a019.CrossRefGoogle Scholar
  26. 26.
    K. Itaka, K. Yamauchi, A. Harada, K. Nakamura, H. Kawaguchi, and K. Kataoka. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials. 24:4495–4506 (2003) doi: 10.1016/S0142-9612(03)00347-8.PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Matsumura, and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kanjiro Miyata
    • 1
    • 6
  • Makoto Oba
    • 2
  • Mitsunobu R. Kano
    • 3
    • 6
  • Shigeto Fukushima
    • 4
  • Yelena Vachutinsky
    • 1
  • Muri Han
    • 5
  • Hiroyuki Koyama
    • 2
  • Kohei Miyazono
    • 3
    • 6
  • Nobuhiro Nishiyama
    • 4
    • 6
  • Kazunori Kataoka
    • 1
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Clinical Vascular Regeneration, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Department of Molecular Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
  4. 4.The Center for Disease Biology and Integrative Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
  5. 5.Department of Materials EngineeringGraduate School of EngineeringTokyoJapan
  6. 6.Center for NanoBio IntegrationThe University of TokyoTokyoJapan

Personalised recommendations