Pharmaceutical Research

, Volume 26, Issue 1, pp 101–117 | Cite as

Templated Open Flocs of Nanorods for Enhanced Pulmonary Delivery with Pressurized Metered Dose Inhalers

  • Josh D. Engstrom
  • Jasmine M. Tam
  • Maria A. Miller
  • Robert O. WilliamsIII
  • Keith P. Johnston
Research Paper



A novel concept is presented for the formation of stable suspensions composed of low density flocs of high aspect ratio drug particles in hydrofluoroalkane (HFA) propellants, and for subdividing (templating) the flocs with aerosolized HFA droplets to achieve high fine particle fractions with a pressurized metered dose inhaler.


Bovine serum albumin (BSA) nanorods, produced by thin film freezing (TFF), were added to HFA to form a suspension. Particle properties were analyzed with an Anderson cascade impactor (ACI), static and dynamic light scattering and optical microscopy.


The space filling flocs in HFA were stable against settling for one year. The pMDI produced high fine particle fractions (38–47%) with an emitted dose of 0.7 mg/actuation. The atomized HFA droplets break apart, that is template, the highly open flocs. Upon evaporation of HFA, capillary forces shrink the templated flocs to produce porous particles with optimal aerodynamic diameters for deep lung delivery.


Open flocs composed of nanorods, stable against settling, may be templated during actuation with a pMDI to produce optimal aerodynamic diameters and high fine particle fractions. This concept is applicable to a wide variety of drugs without the need for surfactants or cosolvents to stabilize the primary particles.


bovine serum albumin floc nanorod pressurized metered dose inhaler suspension stability 


  1. 1.
    R. U. Agu, M. I. Ugwoke, M. Armand, R. Kinget, and N. Verbeke. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2:198–209 (2001) doi:10.1186/rr58.PubMedCrossRefGoogle Scholar
  2. 2.
    A. L. Adjei, and P. K. Gupta. Inhalation delivery of therapeutic peptides and proteins. Int. J. Pharm. 159:259 (1997).CrossRefGoogle Scholar
  3. 3.
    S. White, D. B. Bennett, S. Cheu, P. W. Conley, D. B. Guzek, S. Gray, J. Howard, R. Malcolmson, J. M. Parker, P. Roberts, N. Sadrzadeh, J. D. Schumacher, S. Seshadri, G. W. Sluggett, C. L. Stevenson, and N. J. Harper. EXUBERA: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol. Ther. 7:896–906 (2005) doi:10.1089/dia.2005.7.896.PubMedCrossRefGoogle Scholar
  4. 4.
    S. A. Shoyele, and A. Slowey. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int. J. Pharm. 314:1–8 (2006) doi:10.1016/j.ijpharm.2006.02.014.PubMedCrossRefGoogle Scholar
  5. 5.
    H. M. Courrier, N. Butz, and T. F. Vandamme. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carr. Syst. 19:425–498 (2002) doi:10.1615/CritRevTherDrugCarrierSyst.v19.i45.40.CrossRefGoogle Scholar
  6. 6.
    M. J. Kwon, J. H. Bae, J. J. Kim, K. Na, and E. S. Lee. Long acting porous microparticle for pulmonary protein delivery. Int. J. Pharm. 333:5–9 (2007) doi:10.1016/j.ijpharm.2007.01.016.PubMedCrossRefGoogle Scholar
  7. 7.
    J. S. Patton, and P. R. Byron. Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery. 6:67–74 (2007) doi:10.1038/nrd2153.PubMedCrossRefGoogle Scholar
  8. 8.
    V. Codrons, F. Vanderbist, R. K. Verbeeck, M. Arras, D. Lison, V. Preat, and R. Vanbever. Systemic delivery of parathyroid hormone (1–34) using inhalation dry powders in rats. J. Pharm. Sci. 92:938–950 (2003) doi:10.1002/jps.10346.PubMedCrossRefGoogle Scholar
  9. 9.
    L. Garcia-Contreras, and H. D. C. Smyth. Liquid-spray or dry-powder systems for inhaled delivery of peptide and proteins? American Journal of Drug Delivery. 3:29–45 (2005) doi:10.2165/00137696-200503010-00004.CrossRefGoogle Scholar
  10. 10.
    D. Traini, P. Young, P. Rogueda, and R. Price. The use of AFM and surface energy measurements to investigate drug–canister material interactions in a model pressurized metered dose inhaler formulation. Aerosol Sci. Tech. 40:227–236 (2006) doi:10.1080/02786820500543316.CrossRefGoogle Scholar
  11. 11.
    P. Rogueda. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opinion on Drug Delivery. 2:625–638 (2005) doi:10.1517/17425247.2.4.625.PubMedCrossRefGoogle Scholar
  12. 12.
    R. O. Williams III, and J. Liu. Formulation of a protein with propellant HFA 134a for aerosol delivery. Eur. J. Pharm. Sci. 7:137–144 (1999) doi:10.1016/S0928-0987(98)00015-3.PubMedCrossRefGoogle Scholar
  13. 13.
    R. O. Williams III, M. Repka, and J. Liu. Influence of propellant composition on drug delivery from a pressurized metered-dose inhaler. Drug Dev. Ind. Pharm. 24:763–770 (1998) doi:10.3109/03639049809082724.PubMedCrossRefGoogle Scholar
  14. 14.
    K. A. Johnson. Interfacial phenomena and phase behavior in metered dose inhaler formulations. In A. J. Hickey (ed.), Inhalation Aerosols: Physical and Biological Basis for Therapy, Vol. 221. Lung Biology in Health and Disease, 2007.Google Scholar
  15. 15.
    E. A. Quinn, R. T. Forbes, A. C. Williams, M. J. Oliver, L. McKenzie, and T. S. Purewal. Protein conformational stability in the hydrofluoroalkane propellants tetrafluoroethane and heptafluoropropane analyzed by Fourier transform Raman spectroscopy. Int. J. Pharm. 186:31–41 (1999) doi:10.1016/S0378-5173(99)00135-0.PubMedCrossRefGoogle Scholar
  16. 16.
    M. J. Oliver, L. McKenzie, W. D. Graffiths, G. R. Morgan, and N. O’Kelly. Initial assessment of a protein formulated in pressurized MDIS for pulmonary delivery. In RDD VII, 2000.Google Scholar
  17. 17.
    C. Benfait. Kos reports achievement of new research and development milestones. Kos Press Release (2004).Google Scholar
  18. 18.
    J. Heyder, J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. Deposition of particles in the human respiratory tract in the size range 0.005–15 µm. J. Aerosol Sci. 17:811–825 (1986) doi:10.1016/0021-8502(86)90035-2.CrossRefGoogle Scholar
  19. 19.
    A. Ben-Jebria, D. Chen, M. L. Eskew, R. Vanbever, R. Langer, and D. A. Edwards. Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs. Pharm. Res. 16:555–561 (1999) doi:10.1023/A:1018879331061.PubMedCrossRefGoogle Scholar
  20. 20.
    N. Tsapis, D. Bennett, B. Jackson, D. A. Weitz, and D. A. Edwards. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. U. S. A. 99:12001–12005 (2002) doi:10.1073/pnas.182233999.PubMedCrossRefGoogle Scholar
  21. 21.
    L. A. Dellamary, T. E. Tarara, D. J. Smith, C. H. Woelk, A. Adractas, M. L. Costello, H. Gill, and J. G. Weers. Hollow porous particles in metered dose inhalers. Pharm. Res. 17:168–174 (2000) doi:10.1023/A:1007513213292.PubMedCrossRefGoogle Scholar
  22. 22.
    Y.-F. Maa, P.-A. Nguyen, T. Sweeney, S. J. Shire, and C. C. Hsu. Protein inhalation powders: spray drying vs spray freeze drying. Pharm. Res. 16:249–254 (1999) doi:10.1023/A:1018828425184.PubMedCrossRefGoogle Scholar
  23. 23.
    Y.-F. Maa, and H. R. Costantino. Spray freeze-drying of biopharmaceuticals: applications and stability considerations. In H. R. Costantino, and M. J. Pikal (eds.), Biotechnology: Pharmaceutical Aspects. 2. Lyophilization of Biopharmaceuticals, Vol. 2, American Association of Pharmaceutical Scientists, Arlington, 2004, pp. 519–561.Google Scholar
  24. 24.
    Z. Yu, A. S. Garcia, K. P. Johnston, and R. O. Williams III. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur. J. Pharm. Biopharm. 58:529–537 (2004) doi:10.1016/j.ejpb.2004.04.018.PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Engstrom, D. T. Simpson, E. Lai, R. O. Williams III, and K. P. Johnston. Morphology of protein particles produced by spray freezing of concentrated solutions. Eur. J. Pharm. Biopharm. 65:149–162 (2007) doi:10.1016/j.ejpb.2006.08.005.PubMedCrossRefGoogle Scholar
  26. 26.
    J. D. Engstrom, D. T. Simpson, C. Cloonan, E. Lai, R. O. Williams III, G. B. Kitto, and K. P. Johnston. Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. Eur. J. Pharm. Biopharm. 65:163–174 (2007) doi:10.1016/j.ejpb.2006.08.002.PubMedCrossRefGoogle Scholar
  27. 27.
    Z. Yu, K. P. Johnston, and R. O. Williams III. Spray freezing into liquid versus spray-freeze drying: Influence of atomization on protein aggregation and biological activity. Eur. J. Pharm. Sci. 27:9–18 (2006) doi:10.1016/j.ejps.2005.08.010.PubMedCrossRefGoogle Scholar
  28. 28.
    Z. Yu, T. L. Rogers, J. Hu, K. P. Johnston, and R. O. Williams III. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur. J. Pharm. Biopharm. 54:221–228 (2002) doi:10.1016/S0939-6411(02)00050-4.PubMedCrossRefGoogle Scholar
  29. 29.
    J. D. Engstrom, E. S. Lai, B. Ludher, B. Chen, T. E. Milner, G. B. Kitto, R. O. Williams III, and K. P. Johnston. Formation of stable submicron protein particles by thin film freezing. Pharm. Res. 25:1334–1346 (2008) doi:10.1007/s11095-008-9540-4.PubMedCrossRefGoogle Scholar
  30. 30.
    S. D. Webb, S. L. Golledge, J. L. Cleland, J. F. Carpenter, and T. W. Randolph. Surface adsorption of recombinant human interferon-γ in lyophilized and spray-lyophilized formulations. J. Pharm. Sci. 91:1474–1487 (2002) doi:10.1002/jps.10135.PubMedCrossRefGoogle Scholar
  31. 31.
    X. C. Nguyen, J. D. Herberger, and P. A. Burke. Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharm. Res. 21:507–514 (2004) doi:10.1023/B:PHAM.0000019306.89420.f0.PubMedCrossRefGoogle Scholar
  32. 32.
    Y.-F. Maa, and S. J. Prestrelski. Biopharmaceutical powders: particle formation and formulation considerations. Curr. Pharm. Biotechnol. 1:283–302 (2000) doi:10.2174/1389201003378898.PubMedCrossRefGoogle Scholar
  33. 33.
    I. Gonda. Development of a systematic theory of suspension inhalation aerosols. I. A framework to study the effects of aggregation on the aerodynamic behavior of drug particles. Int. J. Pharm. 27:99–116 (1985) doi:10.1016/0378–5173(85)90189-9.CrossRefGoogle Scholar
  34. 34.
    Y.-H. Liao, M. B. Brown, S. A. Jones, T. Nazir, and G. P. Martin. The effects of polyvinyl alcohol on the in vitro stability and delivery of spray-dried protein particles from surfactant-free HFA 134a-based pressurised metered dose inhalers. Int. J. Pharm. 304:29–39 (2005) doi:10.1016/j.ijpharm.2005.07.013.PubMedCrossRefGoogle Scholar
  35. 35.
    M. Keller. Innovations and perspectives of metered dose inhalers in pulmonary drug delivery. Int. J. Pharm. 186:81–90 (1999) doi:10.1016/S0378-5173(99)00132-5.PubMedCrossRefGoogle Scholar
  36. 36.
    C. Vervaet, and P. R. Byron. Drug-surfactant-propellant interactions in HFA-formulations. Int. J. Pharm. 186:13–30 (1999) doi:10.1016/S0378-5173(99)00134-9.PubMedCrossRefGoogle Scholar
  37. 37.
    F. E. Blondino, and P. R. Byron. Surfactant dissolution and water solubilization in chlorine-free liquified gas propellants. Drug Dev. Ind. Pharm. 24:935–945 (1998) doi:10.3109/03639049809097273.PubMedCrossRefGoogle Scholar
  38. 38.
    R. P. S. Peguin, P. Selvam, and S. R. P. da Rocha. Microscopic and thermodynamic properties of the HFA134a-water interface: atomistic computer simulations and tensiometry under pressure. Langmuir. 22:8826–8830 (2006) doi:10.1021/la0608157.PubMedCrossRefGoogle Scholar
  39. 39.
    L. Wu, R. P. S. Peguin, P. Selvam, U. Chokshi, and S. R. P. da Rocha. Molecular scale behavior in alternative propellant-based inhaler formulations. In A. J. Hickey (ed), Inhalation Aerosols: Physical and biological basis for therapy, Vol. 221. Lung Biology in Health and Disease, 2007.Google Scholar
  40. 40.
    R. Vanbever, J. D. Mintzes, J. Wang, J. Nice, D. Chen, R. Batycky, R. Langer, and D. A. Edwards. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 16:1735–1742 (1999) doi:10.1023/A:1018910200420.PubMedCrossRefGoogle Scholar
  41. 41.
    D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer. Large porous particles for pulmonary drug delivery. Science. 276:1868–1871 (1997) doi:10.1126/science.276.5320.1868.PubMedCrossRefGoogle Scholar
  42. 42.
    J. Tam, J. T. McConville, R. O. Williams III, and K. P. Johnston. Amorphous cyclosporin A nanodispersions for enhanced pulmonary deposition and dissolution. J. Pharm. Sci. in press (2008) doi:10.1002/jps.21367.
  43. 43.
    Z. Jiang, and Y. Guan. Flocculation morphology: effect of particulate shape and coagulant species on flocculation. Water Sci. Technol. 53:9–16 (2006) doi:10.2166/wst.2006.339.Google Scholar
  44. 44.
    I. Goodarz-Nia, and D. N. Sutherland. Floc simulation. Effects of particle size and shape. Chem. Eng. Sci. 30:407–12 (1975) doi:10.1016/0009-2509(75)85005-6.CrossRefGoogle Scholar
  45. 45.
    P. C. Hiemenz and R. Rajagopalan. Principles of colloid and surface chemistry, Marcel Dekker, New York, 1997.Google Scholar
  46. 46.
    A. P. Philipse, and A. M. Wierenga. On the density and structure formation in gels and clusters of colloidal rods and fibers. Langmuir. 14:49–54 (1998) doi:10.1021/la9703757.CrossRefGoogle Scholar
  47. 47.
    A. P. Philipse. The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir. 12:5971 (1996) doi:10.1021/la960869o.CrossRefGoogle Scholar
  48. 48.
    R. G. Larson. The structure and rheology of complex fluids. Oxford University Press, New York, 1999.Google Scholar
  49. 49.
    P. G. Smith Jr., W. Ryoo, and K. P. Johnston. Electrostatically stabilized metal oxide particle dispersions in carbon dioxide. J. Phys. Chem. B. 109:20155–20165 (2005) doi:10.1021/jp0532521.PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Kim, S. H. Atwell, and R. G. Bell. Determination of water in pressurized pharmaceutical metered dose aerosol products. Drug Dev. Ind. Pharm. 18:2185–2195 (1992) doi:10.3109/03639049209038756.CrossRefGoogle Scholar
  51. 51.
    R. O. Williams III, J. Liu, and J. J. Koleng. Influence of metering chamber volume and water level on the emitted dose of a suspension-based pMDI containing propellant 134a. Pharm. Res. 14:438–443 (1997) doi:10.1023/A:1012087130114.PubMedCrossRefGoogle Scholar
  52. 52.
    E. Berlin, and M. J. Pallansch. Densities of several proteins and L-amino acids in the dry state. J. Phys. Chem. 72:1887–1889 (1968) doi:10.1021/j100852a004.PubMedCrossRefGoogle Scholar
  53. 53.
    P. G. A. Rogueda. HPFP, a model propellant for pMDIs. Drug Dev. Ind. Pharm. 29:39–49 (2003) doi:10.1081/DDC-120016682.PubMedCrossRefGoogle Scholar
  54. 54.
    R. Ashayer, P. F. Luckham, S. Manimaaran, and P. Rogueda. Investigation of the molecular interactions in a pMDI formulation by atomic force microscopy. Eur. J. Pharm. Sci. 21:533–543 (2004) doi:10.1016/j.ejps.2003.12.003.PubMedCrossRefGoogle Scholar
  55. 55.
    D. Traini, M. Young Paul, P. Rogueda, and R. Price. In vitro investigation of drug particulates interactions and aerosol performance of pressurised metered dose inhalers. Pharm. Res. 24:125–135 (2007) doi:10.1007/s11095-006-9130-2.PubMedCrossRefGoogle Scholar
  56. 56.
    S. L. Nail, S. Jiang, S. Chongprasert, and S. A. Knopp. Fundamentals of freeze-drying. In S. L. Nailand, and M. J. Akers (eds.), Pharmaceutical Biotechnology. 14. Development and Manufacture of Protein Pharmaceuticals, Vol. 14, Kluwer, New York, 2002, pp. 281–360.Google Scholar
  57. 57.
    S. D. Webb, J. L. Cleland, J. F. Carpenter, and T. W. Randolph. A new mechanism for decreasing aggregation of recombinant human interferon-g by a surfactant: slowed dissolution of lyophilized formulations in a solution containing 0.03% polysorbate 20. J. Pharm. Sci. 91:543–558 (2002) doi:10.1002/jps.10033.PubMedCrossRefGoogle Scholar
  58. 58.
    J. F. Carpenter, B. S. Chang, W. Garzon-Rodriguez, and T. W. Randolph. Rational design of stable lyophilized protein formulations: theory and practice. In J. F. Carpenter, and M. C. Manning (eds.), Pharmaceutical Biotechnology. 13. Rational Design of Stable Protein Formulations, Vol. 13, Kluwer, New York, 2002, pp. 109–133.Google Scholar
  59. 59.
    A. Farahnaky, F. Badii, I. A. Farhat, J. R. Mitchell, and S. E. Hill. Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolymers. 78:69–77 (2005) doi:10.1002/bip.20265.PubMedCrossRefGoogle Scholar
  60. 60.
    B. Y. Shekunov, P. Chattopadhyay, H. H. Y. Tong, and A. H. L. Chow. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm. Res. 24:203–227 (2007) doi:10.1007/s11095-006-9146-7.PubMedCrossRefGoogle Scholar
  61. 61.
    W. H. Finlay. The mechanics of inhaled pharmaceutical aerosols, Academic,New York, 2001.Google Scholar
  62. 62.
    A. Sihvola. Electromagnetic mixing formulas and applications, Institute of Electrical Engineers, London, 1999.Google Scholar
  63. 63.
    W. B. Russel, D. A. Saville, and W. R. Schowalter. Colloidal dispersions, Cambridge University Press, Cambridge, 1989.Google Scholar
  64. 64.
    D. Traini, P. Rogueda, P. Young, and R. Price. Surface Energy and Interparticle Forces Correlations in Model pMDI Formulations. Pharm. Res. 22:816–825 (2005) doi:10.1007/s11095-005-2599-2.PubMedCrossRefGoogle Scholar
  65. 65.
    M. A. Bevan. Effect of adsorbed polymer on the interparticle potential, chemical engineering. Carnegie Mellon University, Pittsburgh, 1999.Google Scholar
  66. 66.
    P. Tang, J. Greenwood, and J. A. Raper. A model to describe the settling behavior of fractal aggregates. J. Colloid Interface Sci. 247:210–219 (2002) doi:10.1006/jcis.2001.8028.PubMedCrossRefGoogle Scholar
  67. 67.
    C. Fargues, and C. Turchiuli. Structural characterization of flocs in relation to their settling performances. Chem. Eng. Res. Des. 82:1517 (2004) doi:10.1205/cerd.82.11.1517.52026.CrossRefGoogle Scholar
  68. 68.
    H. Abramowitz, P. S. Shah, P. F. Green, and K. P. Johnston. Welding colloidal crystals with carbon dioxide. Macromolecules. 37:7316–7324 (2004) doi:10.1021/ma048961b.CrossRefGoogle Scholar
  69. 69.
    D. R. Ulrich. Chemical processing of ceramics. Chem. Eng. News. 68:28–40 (1990).Google Scholar
  70. 70.
    H. D. C. Smyth, A. J. Hickey, and R. M. Evans. Aerosol generation from propellant-driven metered dose inhalers. In J. Hickey Anthony (ed), Inhalation Aerosols: Physical and Biological Basis for Therapy, Vol. 221, Lung biology in health and disease, 2007, pp. 399–416.Google Scholar
  71. 71.
    D. L. French, D. A. Edwards, and R. W. Niven. The influence of formulation on emission, deaggregation and deposition of dry powders for inhalation. J. Aerosol Sci. 27:769–783 (1996) doi:10.1016/0021-8502(96)00021-3.CrossRefGoogle Scholar
  72. 72.
    T. L. Rogers, A. C. Nelsen, J. Hu, J. N. Brown, M. Sarkari, T. J. Young, K. P. Johnston, and R. O. Williams III. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur. J. Pharm. Biopharm. 54:271–280 (2002) doi:10.1016/S0939-6411(02)00063-2.PubMedCrossRefGoogle Scholar
  73. 73.
    T. L. Rogers, K. A. Overhoff, P. Shah, P. Santiago, M. J. Yacaman, K. P. Johnston, and R. O. Williams III. Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. Eur. J. Pharm. Biopharm. 55:161–72 (2003) doi:10.1016/S0939-6411(02)00193-5.PubMedCrossRefGoogle Scholar
  74. 74.
    J. Israelachvili. Intermolecular and surface forces. Academic, San Diego, 1992.Google Scholar
  75. 75.
    S. Takashima. Proton fluctuation in protein. Experimental study of the Kirkwood–Shumaker theory. J. Phys. Chem. 69:2281–2286 (1965) doi:10.1021/j100891a023.CrossRefGoogle Scholar
  76. 76.
    R. Tadmor. The London–van der Waals interaction energy between objects of various geometries. J. Phys. Condens. Matter. 13:L195–L202 (2001) doi:10.1088/0953-8984/13/9/101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Josh D. Engstrom
    • 1
  • Jasmine M. Tam
    • 1
  • Maria A. Miller
    • 1
  • Robert O. WilliamsIII
    • 2
  • Keith P. Johnston
    • 1
  1. 1.Department of Chemical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Division of Pharmaceutics, College of PharmacyThe University of Texas at AustinAustinUSA

Personalised recommendations