Pharmaceutical Research

, 25:2972 | Cite as

Systemic Delivery of DNA or siRNA Mediated by Linear Polyethylenimine (L-PEI) Does Not Induce an Inflammatory Response

  • Marie-Elise Bonnet
  • Patrick Erbacher
  • Anne-Laure Bolcato-Bellemin
Research Paper

Abstract

Purpose

The success of nucleic acid therapies depends upon delivery vehicle’s ability to selectively and efficiently deliver therapeutic nucleic acids to target organ with minimal toxicity. The cationic polymer polyethylenimine (PEI) has been widely used for nucleic acid delivery due to its versatility and efficiency. In particular, the last generation of linear PEI (L-PEI) is being more efficient in vivo than the first generation of branched PEI. This led to several clinical trials including phase II bladder cancer therapy and human immunodeficiency virus immunotherapy. When moving towards to the clinic, it is crucial to identify potential side-effects induced by the delivery vehicle.

Materials and Methods

For this purpose we have analyzed the production of pro-inflammatory cytokines [tumor necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-6, IL-12/IL-23, IFN-β and IL-1β] and hepatic enzyme levels (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase) in the blood serum of mice after systemic injection of DNA or siRNAs delivered with L-PEI.

Results

Our data show no major production of pro-inflammatory cytokines or hepatic enzymes after injection of DNA or oligonucleotides active for RNA interference (siRNAs or sticky siRNAs) complexed with L-PEI. Only a slight induction of IFN-γ was measured after DNA delivery, which is probably induced by the CpG mediated response.

Conclusion

Taken together our data highlight that linear polyethylenimine is a delivery reagent of choice for nucleic acid therapeutics.

KEY WORDS

hepatic enzyme polyethylenimine pro-inflammatory cytokine siRNA/DNA delivery sticky siRNAs (ssiRNAs) 

Abbreviations

ALAT

alanine aminotransferase

ALP

alkaline phosphatase

ASAT

aspartate aminotransferase

LDH

Lactate dehydrogenase

L-PEI

linear polyethylenimine

ssiRNA

sticky siRNA

Notes

Acknowledgments

These studies were supported by the sixth framework programme, EU-supported research, GIANT Integrated Project N°LSHB-CT-2004-512087 and RIGHT Integrated Project N°LSHB-CT-2004-005276. The authors want to thank Jeanne-Françoise Williamson for critical reading of the manuscript, Jean-Paul Behr for fruitful discussions and Fabrice Stock for the formulation of non-viral reagents.

References

  1. 1.
    F. Liu, and L. Huang. Development of non-viral vectors for systemic gene delivery. J. Control. Release. 78:259–66 (2002) doi: 10.1016/S0168-3659(01)00494-1.PubMedCrossRefGoogle Scholar
  2. 2.
    P. Hausen, and H. Stein. Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA hybrids. Eur J Biochem. 14:278–83 (1970) doi: 10.1111/j.1432-1033.1970.tb00287.x.PubMedCrossRefGoogle Scholar
  3. 3.
    P. C. Zamecnik, and M. L. Stephenson. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U S A. 75:280–4 (1978) doi: 10.1073/pnas.75.1.280.PubMedCrossRefGoogle Scholar
  4. 4.
    S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–8 (2001) doi: 10.1038/35078107.PubMedCrossRefGoogle Scholar
  5. 5.
    G. J. Hannon. RNA interference. Nature. 418:244–51 (2002) doi: 10.1038/418244a.PubMedCrossRefGoogle Scholar
  6. 6.
    S. Zhang, Y. Xu, B. Wang, W. Qiao, D. Liu, and Z. Li. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J. Control Release. 100:165–80 (2004) doi: 10.1016/j.jconrel.2004.08.019.PubMedCrossRefGoogle Scholar
  7. 7.
    O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 92:7297–301 (1995) doi: 10.1073/pnas.92.16.7297.PubMedCrossRefGoogle Scholar
  8. 8.
    A. Aigner. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnol. 124:12–25 (2006) doi: 10.1016/j.jbiotec.2005.12.003.PubMedCrossRefGoogle Scholar
  9. 9.
    D. Goula, J. S. Remy, P. Erbacher, M. Wasowicz, G. Levi, B. Abdallah, and B. A. Demeneix. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5:712–7 (1998) doi: 10.1038/sj.gt.3300635.PubMedCrossRefGoogle Scholar
  10. 10.
    T. Merdan, K. Kunath, D. Fischer, J. Kopecek, and T. Kissel. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19:140–6 (2002) doi: 10.1023/A:1014212630566.PubMedCrossRefGoogle Scholar
  11. 11.
    A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–63 (2005) doi: 10.1002/jgm.696.PubMedCrossRefGoogle Scholar
  12. 12.
    J. W. Wiseman, C. A. Goddard, D. McLelland, and W. H. Colledge. A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Ther. 10:1654–62 (2003) doi: 10.1038/sj.gt.3302050.PubMedCrossRefGoogle Scholar
  13. 13.
    F. Dif, C. Djediat, O. Alegria, B. Demeneix, and G. Levi. Transfection of multiple pulmonary cell types following intravenous injection of PEI-DNA in normal and CFTR mutant mice. J. Gene Med. 8:82–9 (2006) doi: 10.1002/jgm.831.PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Hassani, J. C. Francois, G. Alfama, G. M. Dubois, M. Paris, C. Giovannangeli, and B. A. Demeneix. A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain. Nucleic Acids Res. 35:e65 (2007) doi: 10.1093/nar/gkm152.PubMedCrossRefGoogle Scholar
  15. 15.
    F. Vernejoul, P. Faure, N. Benali, D. Calise, G. Tiraby, L. Pradayrol, C. Susini, and L. Buscail. Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res. 62:6124–31 (2002).PubMedGoogle Scholar
  16. 16.
    H. W. Liao, and K. W. Yau. In vivo gene delivery in the retina using polyethylenimine. Biotechniques. 42:285–8 (2007).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Ohana, P. Schachter, B. Ayesh, A. Mizrahi, T. Birman, T. Schneider, I. Matouk, S. Ayesh, P. J. Kuppen, N. de Groot, A. Czerniak, and A. Hochberg. Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med. 7:366–74 (2005) doi: 10.1002/jgm.670.PubMedCrossRefGoogle Scholar
  18. 18.
    P. Ohana, O. Gofrit, S. Ayesh, W. Al-Sharef, A. Mizrahi, T. Birman, T. Schneider, I. Matouk, N. De Groot, E. Tavdy, A. Sidi, and A. Hochberg. Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther. Mol. Biol. 8:181–192 (2004).Google Scholar
  19. 19.
    J. Lisziewicz, J. Trocio, L. Whitman, G. Varga, J. Xu, N. Bakare, P. Erbacher, C. Fox, R. Woodward, P. Markham, S. Arya, J. P. Behr, and F. Lori. DermaVir: a novel topical vaccine for HIV/AIDS. J. Invest. Dermatol. 124:160–9 (2005) doi: 10.1111/j.0022-202X.2004.23535.x.PubMedCrossRefGoogle Scholar
  20. 20.
    J. Lisziewicz, J. Trocio, J. Xu, L. Whitman, A. Ryder, N. Bakare, M. G. Lewis, W. Wagner, A. Pistorio, S. Arya, and F. Lori. Control of viral rebound through therapeutic immunization with DermaVir. Aids. 19:35–43 (2005) doi: 10.1097/00002030-200501030-00004.PubMedCrossRefGoogle Scholar
  21. 21.
    B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–465 (2005) doi: 10.1038/sj.gt.3302425.PubMedCrossRefGoogle Scholar
  22. 22.
    M. Grzelinski, B. Urban-Klein, T. Martens, K. Lamszus, U. Bakowsky, S. Hobel, F. Czubayko, and A. Aigner. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17:751–66 (2006) doi: 10.1089/hum.2006.17.751.PubMedCrossRefGoogle Scholar
  23. 23.
    A. L. Bolcato-Bellemin, M. E. Bonnet, G. Creusat, P. Erbacher, and J. P. Behr. Sticky overhangs enhance siRNA-mediated gene silencing. Proc. Natl. Acad. Sci. U S A. 104:16050–5 (2007) doi: 10.1073/pnas.0707831104.PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Tan, F. Liu, Z. Li, S. Li, and L. Huang. Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. Mol. Ther. 3:673–82 (2001) doi: 10.1006/mthe.2001.0311.PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Tousignant, A. L. Gates, L. A. Ingram, C. L. Johnson, J. B. Nietupski, S. H. Cheng, S. J. Eastman, and R. K. Scheule. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum. Gene Ther. 11:2493–513 (2000) doi: 10.1089/10430340050207984.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Whitmore, S. Li, and L. Huang. . LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther. 6:1867–75 (1999) doi: 10.1038/sj.gt.3301026.PubMedCrossRefGoogle Scholar
  27. 27.
    F. Sakurai, T. Terada, K. Yasuda, F. Yamashita, Y. Takakura, and M. Hashida. The role of tissue macrophages in the induction of proinflammatory cytokine production following intravenous injection of lipoplexes. Gene Ther. 9:1120–6 (2002) doi: 10.1038/sj.gt.3301784.PubMedCrossRefGoogle Scholar
  28. 28.
    N. S. Yew, H. Zhao, I. H. Wu, A. Song, J. D. Tousignant, M. Przybylska, and S. H. Cheng. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol. Ther. 1:255–62 (2000) doi: 10.1006/mthe.2000.0036.PubMedCrossRefGoogle Scholar
  29. 29.
    S. Li, S. P. Wu, M. Whitmore, E. J. Loeffert, L. Wang, S. C. Watkins, B. R. Pitt, and L. Huang. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am. J. Physiol. 276:L796–804 (1999).PubMedGoogle Scholar
  30. 30.
    O. Boussif, M. A. Zanta, and J. P. Behr. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3:1074–80 (1996).PubMedGoogle Scholar
  31. 31.
    D. Goula, C. Benoist, S. Mantero, G. Merlo, G. Levi, and B. A. Demeneix. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5:1291–5 (1998) doi: 10.1038/sj.gt.3300717.PubMedCrossRefGoogle Scholar
  32. 32.
    S. M. Zou, P. Erbacher, J. S. Remy, and J. P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128–34 (2000) doi: 10.1002/(SICI)1521-2254(200003/04)2:2<128::AID-JGM95>3.0.CO;2-W.PubMedCrossRefGoogle Scholar
  33. 33.
    R. Kircheis, S. Schuller, S. Brunner, M. Ogris, K. H. Heider, W. Zauner, and E. Wagner. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gene Med. 1:111–20 (1999) doi: 10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-Y.PubMedCrossRefGoogle Scholar
  34. 34.
    R. Ramesh, T. Saeki, N. S. Templeton, L. Ji, L. C. Stephens, I. Ito, D. R. Wilson, Z. Wu, C. D. Branch, J. D. Minna, and J. A. Roth. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol. Ther. 3:337–50 (2001) doi: 10.1006/mthe.2001.0266.PubMedCrossRefGoogle Scholar
  35. 35.
    M. Iyer, M. Berenji, N. S. Templeton, and S. S. Gambhir. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol. Ther. 6:555–62 (2002) doi: 10.1006/mthe.2002.0700.PubMedCrossRefGoogle Scholar
  36. 36.
    P. F. Solter. Clinical pathology approaches to hepatic injury. Toxicol. Pathol. 33:9–16 (2005) doi: 10.1080/01926230590522086.PubMedCrossRefGoogle Scholar
  37. 37.
    Q. Ge, L. Filip, A. Bai, T. Nguyen, H. N. Eisen, and J. Chen. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U S A. 101:8676–81 (2004) doi: 10.1073/pnas.0402486101.PubMedCrossRefGoogle Scholar
  38. 38.
    J. D. Heidel, S. Hu, X. F. Liu, T. J. Triche, and M. E. Davis. Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol. 22:1579–82 (2004) doi: 10.1038/nbt1038.PubMedCrossRefGoogle Scholar
  39. 39.
    V. Hornung, M. Guenthner-Biller, C. Bourquin, A. Ablasser, M. Schlee, S. Uematsu, A. Noronha, M. Manoharan, S. Akira, A. de Fougerolles, S. Endres, and G. Hartmann. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11:263–70 (2005) doi: 10.1038/nm1191.PubMedCrossRefGoogle Scholar
  40. 40.
    L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413:732–8 (2001) doi: 10.1038/35099560.PubMedCrossRefGoogle Scholar
  41. 41.
    M. Matsumoto, S. Kikkawa, M. Kohase, K. Miyake, and T. Seya. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun. 293:1364–9 (2002) doi: 10.1016/S0006-291X(02)00380-7.PubMedCrossRefGoogle Scholar
  42. 42.
    J. D. Tousignant, H. Zhao, N. S. Yew, S. H. Cheng, S. J. Eastman, and R. K. Scheule. DNA sequences in cationic lipid:pDNA-mediated systemic toxicities. Hum. Gene Ther. 14:203–14 (2003) doi: 10.1089/10430340360535760.PubMedCrossRefGoogle Scholar
  43. 43.
    S. Kawakami, Y. Ito, P. Charoensit, F. Yamashita, and M. Hashida. Evaluation of proinflammatory cytokine production induced by linear and branched polyethylenimine/plasmid DNA complexes in mice. J. Pharmacol. Exp. Ther. 317:1382–90 (2006) doi: 10.1124/jpet.105.100669.PubMedCrossRefGoogle Scholar
  44. 44.
    K. J. Tracey, Y. Fong, D. G. Hesse, K. R. Manogue, A. T. Lee, G. C. Kuo, S. F. Lowry, and A. Cerami. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 330:662–4 (1987) doi: 10.1038/330662a0.PubMedCrossRefGoogle Scholar
  45. 45.
    K. J. Tracey, S. F. Lowry, T. J. Fahey 3rd, J. D. Albert, Y. Fong, D. Hesse, B. Beutler, K. R. Manogue, S. Calvano, H. Wei, and et al. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg. Gynecol. Obstet. 164:415–22 (1987).PubMedGoogle Scholar
  46. 46.
    L. C. Borishand, and J. W. Steinke. 2. Cytokines and chemokines. J. Allergy Clin. Immunol. 111:S460–75 (2003) doi: 10.1067/mai.2003.108.CrossRefGoogle Scholar
  47. 47.
    A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 374:546–9 (1995) doi: 10.1038/374546a0.PubMedCrossRefGoogle Scholar
  48. 48.
    A. M. Krieg. CpG motifs: the active ingredient in bacterial extracts? Nat. Med. 9:831–5 (2003) doi: 10.1038/nm0703-831.PubMedCrossRefGoogle Scholar
  49. 49.
    D. M. Klinman. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4:249–58 (2004) doi: 10.1038/nri1329.PubMedCrossRefGoogle Scholar
  50. 50.
    S. Loisel, C. Le Gall, L. Doucet, C. Ferec, and V. Floch. Contribution of plasmid DNA to hepatotoxicity after systemic administration of lipoplexes. Hum. Gene Ther. 12:685–96 (2001) doi: 10.1089/104303401300057405.PubMedCrossRefGoogle Scholar
  51. 51.
    G. McLachlan, B. J. Stevenson, D. J. Davidson, and D. J. Porteous. Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs. Gene Ther. 7:384–92 (2000) doi: 10.1038/sj.gt.3301097.PubMedCrossRefGoogle Scholar
  52. 52.
    B. D. Freimark, H. P. Blezinger, V. J. Florack, J. L. Nordstrom, S. D. Long, D. S. Deshpande, S. Nochumson, and K. L. Petrak. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J. Immunol. 160:4580–6 (1998).PubMedGoogle Scholar
  53. 53.
    Y. Tan, S. Li, B. R. Pitt, and L. Huang. The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene Ther. 10:2153–61 (1999) doi: 10.1089/10430349950017149.PubMedCrossRefGoogle Scholar
  54. 54.
    K. Kariko, P. Bhuyan, J. Capodici, H. Ni, J. Lubinski, H. Friedman, and D. Weissman. Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs. 177:132–8 (2004) doi: 10.1159/000079987.PubMedCrossRefGoogle Scholar
  55. 55.
    M. Sioud. RNA interference and innate immunity. Adv. Drug Deliv. Rev. 59:153–63 (2007) doi: 10.1016/j.addr.2007.03.006.PubMedCrossRefGoogle Scholar
  56. 56.
    M. Sioud, G. Furset, and L. Cekaite. Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem. Biophys. Res. Commun. 361:122–6 (2007) doi: 10.1016/j.bbrc.2007.06.177.PubMedCrossRefGoogle Scholar
  57. 57.
    A. Reynolds, E. M. Anderson, A. Vermeulen, Y. Fedorov, K. Robinson, D. Leake, J. Karpilow, W. S. Marshall, and A. Khvorova. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. Rna. 12:988–93 (2006) doi: 10.1261/rna.2340906.PubMedCrossRefGoogle Scholar
  58. 58.
    A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, and I. MacLachlan. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23:457–62 (2005) doi: 10.1038/nbt1081.PubMedCrossRefGoogle Scholar
  59. 59.
    C. Dahlgren, C. Wahlestedt, and H. Thonberg. No induction of anti-viral responses in human cell lines HeLa and MCF-7 when transfecting with siRNA or siLNA. Biochem. Biophys. Res. Commun. 341:1211–7 (2006) doi: 10.1016/j.bbrc.2006.01.085.PubMedCrossRefGoogle Scholar
  60. 60.
    J. Lisziewicz, D. I. Gabrilovich, G. Varga, J. Xu, P. D. Greenberg, S. K. Arya, M. Bosch, J. P. Behr, and F. Lori. Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J. Virol. 75:7621–8 (2001) doi: 10.1128/JVI.75.16.7621-7628.2001.PubMedCrossRefGoogle Scholar
  61. 61.
    M. R. Garzon, P. Berraondo, J. Crettaz, L. Ochoa, M. Vera, J. J. Lasarte, A. Vales, N. Van Rooijen, J. Ruiz, J. Prieto, J. Zulueta, and G. Gonzalez-Aseguinolaza. Induction of gp120-specific protective immune responses by genetic vaccination with linear polyethylenimine-plasmid complex. Vaccine. 23:1384–92 (2005) doi: 10.1016/j.vaccine.2004.09.009.PubMedCrossRefGoogle Scholar
  62. 62.
    R. O. Recknagel. Carbon tetrachloride hepatotoxicity. Pharmacol. Rev. 19:145–208 (1967).PubMedGoogle Scholar
  63. 63.
    D. Bhattacharyya, S. Pandit, R. Mukherjee, N. Das, and T. K. Sur. Hepatoprotective effect of Himoliv, a polyherbal formulation in rats. Indian J. Physiol. Pharmacol. 47:435–40 (2003).PubMedGoogle Scholar
  64. 64.
    S. R. Kristensen. Mechanisms of cell damage and enzyme release. Dan. Med. Bull. 41:423–33 (1994).PubMedGoogle Scholar
  65. 65.
    J. Mair. Tissue release of cardiac markers: from physiology to clinical applications. Clin. Chem. Lab. Med. 37:1077–84 (1999) doi: 10.1515/CCLM.1999.157.PubMedCrossRefGoogle Scholar
  66. 66.
    H. M. Piper, P. Schwartz, R. Spahr, J. F. Hutter, and P. G. Spieckermann. Early enzyme release from myocardial cells is not due to irreversible cell damage. J. Mol. Cell Cardiol. 16:385–8 (1984) doi: 10.1016/S0022-2828(84)80609-4.PubMedCrossRefGoogle Scholar
  67. 67.
    P. Chollet, M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84–91 (2002) doi: 10.1002/jgm.237.PubMedCrossRefGoogle Scholar
  68. 68.
    Y. K. Oh, J. P. Kim, H. Yoon, J. M. Kim, J. S. Yang, and C. K. Kim. Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther. 8:1587–92 (2001) doi: 10.1038/sj.gt.3301516.PubMedCrossRefGoogle Scholar
  69. 69.
    G. J. Jeong, H. M. Byun, J. M. Kim, H. Yoon, H. G. Choi, W. K. Kim, S. J. Kim, and Y. K. Oh. Biodistribution and tissue expression kinetics of plasmid DNA complexed with polyethylenimines of different molecular weight and structure. J. Control Release. 118:118–25 (2007) doi: 10.1016/j.jconrel.2006.12.009.PubMedCrossRefGoogle Scholar
  70. 70.
    C. Rudolph, J. Lausier, S. Naundorf, R. H. Muller, and J. Rosenecker. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. 2:269–78 (2000) doi: 10.1002/1521-2254(200007/08)2:4<269::AID-JGM112>3.0.CO;2-F.PubMedCrossRefGoogle Scholar
  71. 71.
    A. Gautam, C. L. Densmore, and J. C. Waldrep. Pulmonary cytokine responses associated with PEI-DNA aerosol gene therapy. Gene Ther. 8:254–7 (2001) doi: 10.1038/sj.gt.3301369.PubMedCrossRefGoogle Scholar
  72. 72.
    S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11:990–5 (2005) doi: 10.1016/j.ymthe.2005.02.010.PubMedCrossRefGoogle Scholar
  73. 73.
    C. Rudolph, R. H. Muller, and J. Rosenecker. Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J. Gene Med. 4:66–74 (2002) doi: 10.1002/jgm.225.PubMedCrossRefGoogle Scholar
  74. 74.
    C. Plank, K. Mechtler, F. C. Szoka Jr., and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–46 (1996) doi: 10.1089/hum.1996.7.12-1437.PubMedCrossRefGoogle Scholar
  75. 75.
    R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa, and E. Wagner. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8:28–40 (2001) doi: 10.1038/sj.gt.3301351.PubMedCrossRefGoogle Scholar
  76. 76.
    A. Bragonzi, A. Boletta, A. Biffi, A. Muggia, G. Sersale, S. H. Cheng, C. Bordignon, B. M. Assael, and M. Conese. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther. 6:1995–2004 (1999) doi: 10.1038/sj.gt.3301039.PubMedCrossRefGoogle Scholar
  77. 77.
    L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, and E. Wagner. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3:362–72 (2001) doi: 10.1002/jgm.187.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marie-Elise Bonnet
    • 1
  • Patrick Erbacher
    • 1
  • Anne-Laure Bolcato-Bellemin
    • 1
  1. 1.Polyplus-transfection SABioparcIllkirch CedexFrance

Personalised recommendations