Pharmaceutical Research

, Volume 25, Issue 11, pp 2516–2525 | Cite as

In Vitro Effects on MCF-7 Breast Cancer Cells Of Signal Transduction Inhibitor/Tamoxifen/Eicosapentaenoic Acid Combinations and their Simultaneous Delivery Across Skin

  • Zoë Davison
  • Carol Dutkowski
  • Julia M. W. Gee
  • Robert I. Nicholson
  • Charles M. Heard
Research Paper

Abstract

Purpose

To determine the in vitro effects of simultaneously administered LY29400, PD98059, tamoxifen and eicosapentaenoic acid (EPA) on breast cancer cells, and determine their transcutaneous delivery.

Methods

Growth assays were performed on MCF-7 cells challenged with IC50 and permeated concentrations of PD98059, LY294002 and tamoxifen firstly in isolation then combined. Permeation studies were performed using PD98059 and LY294002 (singly or simultaneously) in DMSO then fish oil, with enhancers. Immunocytochemical detection of phospho-MAPK, phospho-Akt, total COX-2 and Ki-67 was performed.

Results

When applied singly, fluxes of PD98059 and LY294002 were 0.09 ± 0.008 and 0.14 ± 0.045 μg cm−2 h−1, respectively; applied simultaneously, 0.18 ± 0.045 and 0.49 ± 0.051 μg cm−2 h−1. Permeated concentrations of PD98059 and LY294002 reduced growth to 13.78 ± 0.63%. Fish oil plus 2.5% DMSO/ethanol allowed 5.96 ± 0.9 and 7.7 ± 1.2 μg cm−2 of PD98059 and LY294002 to permeate after 48 h.

Conclusions

PD98059 and LY294002 permeate excised skin at therapeutically useful rates, and also demonstrate growth inhibitory effects on MCF-7 cancer cells. Synergism was noted in co-transport across skin and activity against cancer cells. A formulation based on fish oil is potentially skin friendly; simultaneous permeation of EPA provides further anti-cancer action.

KEY WORDS

breast cancer EPA signal transduction inhibitor tamoxifen transcutaneous delivery 

Abbreviations

EGFR

epidermal growth factor receptor

EPA

eicosapentaenoic acid

ER

estrogen receptor

kp

permeation coefficient

4OHTam

4-hydroxytamoxifen

References

  1. 1.
    S. Ali, and R. C. Coombes. Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer. 2:101–112 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    R. B. Riggins, K. S. Thomas, H. Q. Ta, J. Wen, R. J. Davis, N. R. Schuh, S. S. Donelan, K. A. Owen, M. A. Gibson, M. A. Shupnik, C. M. Silva, S. J. Parsons, R. Clarke, and A. A. Bouton. Physical and functional interactions between Cas and c-Src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res. 66:7007–7015 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    L. A. deGraffenried, L. Fulcher, W. E. Friedrichs, V. Grünwald, R. B. Ray, and M. Hidalgo. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann. Oncol. 15:1510–1516 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    J. M. Knowlden, I. R. Hutcheson, H. E. Jones, T. Madden, J. M. W. Gee, M. E. Harper, D. Barrow, A. E. Wakeling, and R. I. Nicholson. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 144:1032–1044 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    R. I. Nicholson, C. Staka, F. Boynes, I. R. Hutheson, and J. M. W. Gee. Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: new opportunities for therapy. Endocr.-Relat. Cancer. 11:1–9 (2004).CrossRefGoogle Scholar
  6. 6.
    R. A. Campbell, P. Bhat-Nakshatri, N. M. Patel, D. Constantinidou, S. Ali, and H. Nakshatri. Phosphatidylinositol 3-kinase/Akt-mediated activation of estrogen receptor a, a new model for anti-estrogen resistance. J. Biol. Chem. 276:9817–9824 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    N. J. Jordan, J. M. W. Gee, D. Barrow, A. E. Wakeling, and R. I. Nicholson. Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res. Treat. 87:167–180 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Adeyinka, Y. Nui, T. Cherlet, L. Snell, P. H. Watson, and L. C. Murphy. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin. Cancer Res. 8:1747–1753 (2002).PubMedGoogle Scholar
  9. 9.
    M. Sun, J. E. Paciga, R. I. Feldman, Z.-Q. Yuan, D. Coppola, Y. Y. Lu, S. A. Shelley, S. V. Nicosia, and J. Q. Cheng. Phosphatidylinositol-3-OH kinase (P13K)/AKT2, activated in breast cancer, regulates and is induced by Estrogen Receptor (ER) via interaction between ER and PI3K. Cancer Res. 61:5985–5991 (2001).PubMedGoogle Scholar
  10. 10.
    C. J. Vlahos, W. F. Matter, K. Y. Hui, and R. F. Brown. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241–5248 (1994).PubMedGoogle Scholar
  11. 11.
    K.-C. Choi, N. Auersperg, and P. C. K. Leung. Mitogen-activated protein kinases in normal and (pre)neoplastic ovarian surface epithelium. Reprod. Biol. Endocrinol. 1:71–78 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    D. R. Alessi, A. Cuenda, P. Cohen, D. T. Dudley, and A. R. Saltiel. PD 098059 Is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489–27494 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Ho, R. J. Calder, C. M. Heard, and C. P. Thomas. In vitro transcutaneous delivery of tamoxifen and γ linolenic acid from a borage oil formulation containing ethanol and 1,8-cineole. J. Pharm. Pharmacol. 56:1–8 (2004).Google Scholar
  14. 14.
    A. C. Williams. Topical and Transdermal Drug Delivery, Pharmaceutical, London, 2004.Google Scholar
  15. 15.
    G. Davies, L.-A. Martin, N. Sacks, and M. Dowsett. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann. Oncol. 13:669–678 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    M. L. Parrett, R. E. Harris, and F. S. Joarder. Cyclooxygenase-2 gene expression in human breast cancer. Int. J. Oncol. 11:503–507 (1997).Google Scholar
  17. 17.
    P. J. Wild, L. A. Kunz-Schughart, F. Bataille, R. Simon, G. Sauter, M. Mihatsch, and A. Hartmann. Strong COX-2 overexpression in breast and prostate cancer—a potential therapeutic target. Proc. Am. Assoc. Cancer Res. 45:3059 (2004).Google Scholar
  18. 18.
    T. L. Larkins, M. Nowell, T. Wallace, and G. L. Sanford. Inhibition of COX-2 attenuates the motility and invasion of breast cancer cells. Proc. Am. Assoc. Cancer Res. 46:3059 (2005).Google Scholar
  19. 19.
    E. W. Thompson, and M. Waltham. Stromal MMP targets for human breast cancer growth and progression. Tumor biology. Proc. Am. Assoc. Cancer Res. 47:937–939 (2006).Google Scholar
  20. 20.
    C. P. Thomas, Z. Davison, and C. M. Heard. Probing the skin permeation of fish oil/EPA and ketoprofen 3. Influence of fish oil/ketoprofen on epidermal COX-2 and LOX. Prostaglandins Leukot. Essent. Fat. Acids. 76:357–362 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. I. Yarden, M. A. Wilson, and S. A. Chrysogelos. Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. J. Cell Biochem. 36:232–246 (2001).CrossRefGoogle Scholar
  22. 22.
    S. Zhang, X. Li, R. Burghardt, R. Smith, and S. H. Safe. Role of estrogen receptor (ER)α in insulin-like growth factor (IGF)-I-induced responses in MCF-7 breast cancer cells. J. Molec. Endocrinol. 35:433–447 (2005).CrossRefGoogle Scholar
  23. 23.
    C. M. Heard, D. Kung, and C. P. Thomas. Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the pull effect. Int. J. Pharm. 321:167–170 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    C. M. Staka, R. I. Nicholson, and J. M. W. Gee. Acquired resistance to oestrogen deprivation: role for growth factor signalling kinases/oestrogen receptor cross-talk revealed in new MCF-7X model. Endocr.-Relat. Cancer. 12:S85–S97 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    C. M. Heard, J. L. Harwood, P. Maguire, G. McNaughton, and W. J. Pugh. Simultaneous penetration of NSAID and essential fatty acid esters as a dual-action anti-arthritis therapy. In K. R. Brain, and K. Walters (eds.), Perspectives in Percutaneous Penetration, Vol 8a, STS, Cardiff, 2002, p. 93.Google Scholar
  26. 26.
    C. M. Heard, C. Congiatu, S. J. Gallagher, J. L. Harwood, C. Karia, C. McGuigan, M. Nemcova, T. Nouskova, and C. P. Thomas. Preferential π complexation between tamoxifen and borage oil/γ linolenic acid: transcutaneous delivery and NMR spectral modulation. Int. J. Pharm. 302:47–55 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Lassarre, and J.-M. Ricort. Growth factor-specific regulation of insulin receptor substrate-1 expression in MCF-7 breast carcinoma cells: Effects on the insulin-like growth factor signalling pathway. Endocrinology. 144:4811–4819 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zoë Davison
    • 1
  • Carol Dutkowski
    • 1
  • Julia M. W. Gee
    • 1
  • Robert I. Nicholson
    • 1
  • Charles M. Heard
    • 1
  1. 1.Welsh School of PharmacyCardiff UniversityCardiffUK

Personalised recommendations