Advertisement

Pharmaceutical Research

, Volume 25, Issue 10, pp 2320–2326 | Cite as

Characterization of Substrates and Inhibitors for the In Vitro Assessment of Bcrp Mediated Drug–Drug Interactions

  • Uwe Muenster
  • Birgit Grieshop
  • Karsten Ickenroth
  • Mark Jean Gnoth
Research Paper

Abstract

Purpose

In vitro assessment of drug candidates' affinity for multi-drug resistance proteins is of crucial importance for the prediction of in vivo pharmacokinetics and drug–drug interactions. To have well described experimental tools at hand, the objective of the study was to characterize substrates and inhibitors of Breast Cancer Resistance Protein (BCRP) and P-glycoprotein (P-gp).

Methods

Madin–Darbin canine kidney cells overexpressing mouse Bcrp (MDCKII-Bcrp) were incubated with various Bcrp substrates, or a mixture of substrate and inhibitor to either the apical (A) or basolateral (B) compartment of insert filter plates. Substrate concentrations in both compartments at time points t = 0 h and t = 2 h were determined by LC–MS/MS, and respective permeation coefficients (P app) and efflux ratios were calculated.

Results

The Bcrp inhibitor Ko143 blocked topotecan and ABZSO transport in a concentration-dependent manner. P-gp inhibitors ivermectin, LY335979, PSC833, and the P-gp/Bcrp inhibitor ritonavir did not influence Bcrp mediated topotecan transport, however, blocked ABZSO transport. Additionally, neither was ABZSO transport influenced by topotecan, nor topotecan transport by ABZSO.

Conclusions

Data suggest different modes of substrate and inhibitor binding to Bcrp. In order to not overlook potential drug–drug interactions when testing drug candidates for inhibitory potential towards Bcrp, distinct Bcrp probe substrates should be used.

KEY WORDS

Bcrp drug–drug interaction inhibitor pharmacokinetics substrate 

Abbreviations

A

apical

ABCB1

ATP binding cassette transporter B1

ABCG2

ATP binding cassette transporter G2

ABCP

human placenta-specific ATP-binding cassette gene

ABZSO

albendazole sulphoxide

B

basolateral

BCRP

breast cancer resistance protein

DMEM

Dulbecco's modified Eagle’s medium

DMSO

dimethylsulfoxide

FCS

fetal calf serum

HBSS

Hanks’ balanced salt solution

HEPES

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

LLC-PK1

porcine kidney tubular epithelial cell line

MDCKII

Madin Darby canine kidney cell line II

MXR

mitoxantrone resistance gene

Papp

apparent permeability coefficient

P-gp

P-glycoprotein

TEER

transepithelial electrical resistance

wt

wild-type

Notes

Acknowledgements

We thank Mark Twele for technical assistance during LC–MS/MS analytics.

References

  1. 1.
    Y. Shitara, T. Horie, and Y. Sugiyama. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27:425–446 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Staud, and P. Pavek. Breast cancer resistance protein (BCRP/ABCG2). Int. J. Biochem. Cell Biol. 37:720–725 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Krishnamurthy, and J. D. Schuetz. Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol. 46:381–410 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    J. D. Allen, S. C. Jackson, and A. H. Schinkel. A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for doxorubicin resistance. Cancer Res. 62:2294–2299 (2002).PubMedGoogle Scholar
  5. 5.
    T. W. Loo, and D. M. Clarke. Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J. Biol. Chem. 274:35388–35392 (2002).CrossRefGoogle Scholar
  6. 6.
    A. B. Shapiro, K. Fox, P. Lam, and V. Ling. Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone; evidence for a third drug binding site. Eur. J. Biochem. 259:841–850 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Martin, G. Berridge, C. F. Higgins, P. Mistry, P. Charlton, and R. Callaghan. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol. 58:624–632 (2000).PubMedGoogle Scholar
  8. 8.
    R. J. Dawson, and K. P. Locher. Structure of a bacterial multidrug ABC transporter. Nature. 443:180–185 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    M. F. Rosenberg, R. Callaghan, S. Modok, C. F. Higgins, and R. C. Ford. Three-dimensional structure of P-glycoprotein—the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem. 280:2857–2862 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Y. Lee, I. L. Urbatsch, A. E. Senior, and S. Wilkens. Projection structure of P-glycoprotein by electron microscopy—evidence for a closed conformation of the nucleotide binding domains. J. Biol. Chem. 277:40125–40131 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    L. M. Chan, S. Lowes, and B. H. Hirst. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci. 21:25–51 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    E. Petzinger, and J. Geyer. Drug transporters in pharmacokinetics. Naunyn-Schmiedeberg’s Arch. Pharmacol. 372:465–475 (2006).CrossRefGoogle Scholar
  13. 13.
    C. B. Cui, H. Kakeya, and H. Osada. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 49:534–540 (1996).PubMedGoogle Scholar
  14. 14.
    J. D. Allen, A. van Loevezijn, J. M. Lakhai, M. van der Valk, O. van Tellingen, R. Reid, J. H. Schellens, G. J. Koomen, and A. H. Schinkel. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of Fumitremorgin C. Molecular Cancer Therapeutics. 1:417–425 (2002).PubMedGoogle Scholar
  15. 15.
    J. F. Pouliot, F. L’Heureux, Z. Liu, R. K. Prichard, and E. Gerges. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem. Pharmacol. 53:17–25 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Schwab, H. Fischer, A. Tabatabaei, S. Poli, and J. Huwyler. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J. Med. Chem. 46:1716–1725 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    A. H. Dantzig, R. L. Shepard, J. Cao, K. L. Law, W. J. Ehlhardt, T. M. Baughman, T. F. Bumol, and J. J. Starling. Reversal of P-glycoprotein-mediated resistance by a potent cyclopropyldibenzosuberane modulator, LY 335979. Cancer Res. 56:4171–4179 (1996).PubMedGoogle Scholar
  18. 18.
    J. H. Lin. Drug–drug interaction mediated by inhibition and induction of P-glycoprotein. Adv. Drug Deliv. Rev. 55:53–81 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    C. M. Kruijtzer, J. H. Beijnen, H. Rosing, W. W. ten Bokkel Huinink, M. Schot, R. C. Jewell, E. M. Paul, and J. H. Schellens. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20:2943–2950 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    Food and Drug Administration. Drug interaction studies—study design, data analysis, and implications for dosing and labeling (2006). http://www.fda.gov/cder/guidance/6695 dft.pdf (accessed July 17 2007).
  21. 21.
    J. Rautio, J. E. Humphreys, O. W. Lindsey, A. Balakrishnan, J. P. Keogh, J. R. Kunta, C. J. Serabjit-Singh, and J. W. Polli. In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab. Dispos. 34:786–792 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    J. W. Jonker, J. W. Smit, R. F. Brinkhuis, M. Maliepaard, J. H. Beijnen, J. H. Schellens, and A. H. Schinkel. Role of breast cancer resistance protein in the bioavailability and fetal penetration of Topotecan. J. Natl. Cancer Inst. 92:1651–1656 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Merino, J. W. Jonker, E. Wagenaar, M. M. Pulido, A. J. Molina, A. I. Alvarez, and A. H. Schinkel. Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab. Dispos. 33:614–618 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Breedveld, D. Pluim, G. Cipriani, P. Wielinga, O. van Tellingen, A. H. Schinkel, and J. H. Schellens. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 65:2577–2582 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Özvegy, T. Litman, G. Szakács, Z. Nagy, S. Bates, A. Váradi, and B. Sarkadi. Functional characterization of the human Multidrug transporter, ABCG2, expressed in insect cells. Biochem. Biophys. Res. Commun. 285:111–117 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Gupta, Y. Zhang, J. D. Unadkat, and Q. Mao. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J. Pharmacol. Exp. Ther. 310:334–341 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Evers, M. Kool, A. J. Smith, L. van Deemter, M. de Haas, and P. Borst. Inhibitory effect of the reversal agents V-104, GF 120918, and pluronic L61 on MDR1 P-gp, MRP1- and MRP2- mediated transport. Br. J. Cancer. 83:366–374 (2004).CrossRefGoogle Scholar
  28. 28.
    I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96:736–749 (1989).PubMedGoogle Scholar
  29. 29.
    J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620–628 (2001).PubMedGoogle Scholar
  30. 30.
    C. Özvegy-Laczka, G. Várady, G. Köblös, O. Ujhelly, J. Cervenak, J. D. Schuetz, B. P. Sorrentino, G. Koomen, A. Váradi, K. Német, and B. Sarkadi. Function-dependent conformational changes of the ABCG2 multidrug transporter modify its interaction with a monoclonal antibody on the cell surface. J. Biochem. 280:4219–4227 (2005).Google Scholar
  31. 31.
    R. Clark, I. D. Kerr, and R. Callaghan. Multiple drug binding sites on the R482G isoform of the ABCG2 transporter. Br. J. Pharmacol. 149:506–515 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Nakanishi, L. A. Doyle, B. Hassel, Y. Wei, K. S. Bauer, S. Wu, D. W. Pumplin, H. Fang, and D. D. Ross. Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol. Pharmacol. 64:1452–1462 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Nakanishi, K. Shiozawa, B. Hassel, and D. D. Ross. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood. 108:678–684 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Uwe Muenster
    • 1
  • Birgit Grieshop
    • 1
  • Karsten Ickenroth
    • 1
  • Mark Jean Gnoth
    • 1
  1. 1.Department of Metabolism and PharmacokineticsBayer HealthCare AGWuppertal-AprathGermany

Personalised recommendations