Pharmaceutical Research

, Volume 25, Issue 9, pp 2002–2011

Contrast-Enhanced MRI-Guided Photodynamic Cancer Therapy with a Pegylated Bifunctional Polymer Conjugate

  • Anagha Vaidya
  • Yongen Sun
  • Yi Feng
  • Lyska Emerson
  • Eun-Kee Jeong
  • Zheng-Rong Lu
Research Paper



To study contrast-enhanced MRI guided photodynamic therapy with a pegylated bifunctional polymer conjugate containing an MRI contrast agent and a photosensitizer for minimally invasive image-guided cancer treatment.


Pegylated and non-pegylated poly-(l-glutamic acid) conjugates containing mesochlorin e6, a photosensitizer, and Gd(III)-DO3A, an MRI contrast agent, were synthesized. The effect of pegylation on the biodistribution and tumor targeting was non-invasively visualized in mice bearing MDA-MB-231 tumor xenografts with MRI. MRI-guided photodynamic therapy was carried out in the tumor bearing mice. Tumor response to photodynamic therapy was evaluated by dynamic contrast enhanced MRI and histological analysis.


The pegylated conjugate had longer blood circulation, lower liver uptake and higher tumor accumulation than the non-pegylated conjugate as shown by MRI. Site-directed laser irradiation of tumors resulted in higher therapeutic efficacy for the pegylated conjugate than the non-pegylated conjugate. Moreover, animals treated with photodynamic therapy showed reduced vascular permeability on DCE-MRI and decreased microvessel density in histological analysis.


Pegylation of the polymer bifunctional conjugates reduced non-specific liver uptake and increased tumor uptake, resulting in significant tumor contrast enhancement and high therapeutic efficacy. The pegylated poly(l-glutamic acid) bifunctional conjugate is promising for contrast enhanced MRI guided photodynamic therapy in cancer treatment.


dynamic contrast enhanced MRI image-guided cancer therapy non-invasive pharmacokinetics photodynamic therapy polymer conjugates 


  1. 1.
    V. F. Dima, M. D. Ionescu, C. Balotescu, and S. F. Dima. Photodynamic therapy and come clinical applications in oncology. Rom. Arch. Microbiol. Immunol. 61:159–205 (2002).Google Scholar
  2. 2.
    T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng. Photodynamic therapy. J. Natl. Cancer Inst. 90:889–905 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty. Identification of singlet oxygen as the cytotoxic agent in photoactivation of murine tumors. Cancer Res. 36:2326–2329 (1976).PubMedGoogle Scholar
  4. 4.
    R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, J. H. C. Childs, and C. H. Sibata. Photosensitizers in clinical PDT. Photodiagn. Photodynam. Ther. 1:27–42 (2004).Google Scholar
  5. 5.
    J. Shiah, Y.-E. Sun, C. M. Peterson, R. C. Straight, and J. Kopecek. Antitumor activity of N-(2-hydroxypropyl) methacrylamide copolymer-mesochlorin e6 and adriamycin conjugates in combination treatments. Clin. Cancer Res. 6:1008–1015 (2000).PubMedGoogle Scholar
  6. 6.
    F. N. Jiang, D. J. Liu, H. Neyndorff, M. Chester, S. Y. Jiang, and J. G. Levy. Photodynamic killing of human squamous cell carcinoma cells using a monoclonal antibody-photosensitizer conjugate. J. Natl. Cancer Inst. 83:1218–1225 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    C. F. van Nostrum. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Del. Rev. 56:9–16 (2004).CrossRefGoogle Scholar
  8. 8.
    A. S. L. Derycke, and P. A. M. de Witte. Liposomes for photodynamic therapy. Adv. Drug Del. Rev. 56:17–30 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Rel. 65:271–284 (2000).CrossRefGoogle Scholar
  10. 10.
    M. B. Vrouenraets, G. W. M. Visser, G. B. Snow, and G. A. M. S. van Dongen. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 23:505–522 (2003).PubMedGoogle Scholar
  11. 11.
    E. van Leengoed, J. Versteeg, N. van der Veen, A. van den Berg-Blok, H. Marijnissen, and W. Star. Tissue-localizing properties of some photosensitizers studied by in vivo fluorescence imaging. J. Photochem. Photobiol. B. 6:111–119 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    S. K. Pandey, A. L. Gryshuk, M. Sajjad, X. Zheng, Y. Chen, M. M. Abouzeid, J. Morgan, I. Charamisinau, H. A. Nabi, A. Oseroff, and R. K. Pandey. Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J. Med. Chem. 48:6286–6295 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Stefflova, J. Chen, and G. Zheng. Killer beacons for combined cancer imaging and therapy. Curr. Med. Chem. 14:2110–2125 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Li, A. Slansky, M. P. Dobhal, L. N. Goswami, A. Graham, Y. Chen, P. Kanter, R. A. Alberico, J. Spernyak, J. Morgan, R. Mazurchuk, A. Oseroff, Z. Grossman, and R. K. Pandey. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional ligands for magnetic resonance imaging and photodynamic therapy. Bioconjug. Chem. 16:32–42 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Kopelman, L. Y. Koo, M. Philbert, B. A. Moffat, G. R. Reddy, G. McConville, P. Hall, D. E. Chenevert, T. L. Bhojani, and S. M. Buck. Multifunctional nanoparticles platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Mater. 293:404–410 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Gross, A. Gilead, A. Scherz, M. Neeman, and Y. Solomon. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat. Med. 9:1327–1331 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Vaidya, Y. Sun, T. Ke, E. K. Jeong, and Z. R. Lu. Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn. Reson. Med. 56:761–767 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Lammers, R. Kuhnlein, M. Kissel, V. Subr, T. Etrych, R. Pola, M. Pechar, K. Ulbrich, G. Storm, P. Huber, and P. Peschke. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control Rel. 110:103–118 (2005).CrossRefGoogle Scholar
  19. 19.
    P. Bailon, A. Palleroni, C. A. Schaffer, C. L. Spence, W. J. Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z. X. Xu, M. W. Modi, A. Farid, W. Berthold, and M. Graves. Rational design of a potent, long lasting form of interferon: a 40kDa branched poly-ethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug. Chem. 12:195–202 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    A. N. Lukyanov, R. M. Sawant, W. C. Hartner, and V. P. Torchilin. PEGylated dextran as long-circulating pharmaceutical carrier. J. Biomater. Sci. Polym. Ed. 15:621–630 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    F. M. Veronese, O. Schiavon, G. Pasult, R. Mendichi, L. Andersson, A. Tsirk, J. Ford, G. Wu, S. Kneller, J. Davies, and R. Duncan. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug. Chem. 16:775–784 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    D. E. Owens III, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Beeby, L. M. Bushby, D. Maffeo, and J. A. G. Williams. Intramolecular sensitization of lanthanide(III) luminescence by acetophenone-containing ligands: the critical effect of para-substituents and solvent. J. Chem. Soc, Dalton Trans. 1:48–52 (2002).CrossRefGoogle Scholar
  24. 24.
    Z. P. Liang, and P. C. Lauterbur. Principles of Magnetic Resonance Imaging. IEEE, New York, NY, 1999.Google Scholar
  25. 25.
    Y. Feng, Y. Zong, T. Ke, E. K. Jeong, D. L. Parker, and Z. R. Lu. Pharmacokinetics, biodistribution and contrast enhanced MR blood pool imaging of Gd-DTPA cystine copolymers and Gd-DTPA cystine diethyl ester copolymers in rat model. Pharm. Res. 23:1736–1742 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    D. M. Shames, R. Kuwatsuru, V. Vexler, A. Muhler, and R. C. Brasch. Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn. Resn. Med. 29:616–622 (1993).CrossRefGoogle Scholar
  27. 27.
    L. L. Emerson, S. R. Tripp, B. C. Baird, L. J. Layfield, and L. R. Rohr. A comparison of immunohistochemical stain quality in conventional and rapid microwave processed tissues. Am. J. Clin. Pathol. 125:176–183 (2006).PubMedGoogle Scholar
  28. 28.
    J. M. Harris, N. E. Martin, and M. Modi. PEGylation: A novel process for modifying pharmacokinetics. Clin Pharmacokinet. 7:539–551 (2001).Google Scholar
  29. 29.
    M. R. Hamblin, J. L. Miller, I. Rizvi, B. Ortel, E. V. Maytin, and T. Hassan. Pegylation of a chlorin e6 polymer conjugates increases tumor targeting of photosensitizer. Cancer Res. 61:7155–7162 (2001).PubMedGoogle Scholar
  30. 30.
    M. R. Hamblin, J. L. Miller, I. Rizvi, H. G. Loew, and T. Hasan. Pegylation of charged polymer-photosensitizer conjugates: effects on photodynamic efficacy. Br J Cancer. 89:937–943 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    F. Ye, T. Ke, E. K. Jeong, X. Wang, Y. Sun, M. Johnson, and Z.-R. Lu. Noninvasive visualization of in vivo drug delivery of poly(L-glutamic acid) using contrast-enhanced MRI. Mol. Pharm. 3:507–15 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Zheng, J. Liu, M. Dunne, D. A. Jaffray, and C. Allen. In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharm. Res. 24:1193–1201 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    Y. Wang, F. Ye, E. K. Jeong, Y. Sun, D. L. Parker, and Z.-R. Lu. Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly[N-(2-hydroxypropyl)methacrylamide] in mice using contrast enhanced MRI. Pharm. Res. 24:1208–16 (2007).PubMedCrossRefGoogle Scholar
  34. 34.
    M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 61:749–761 (1997).PubMedCrossRefGoogle Scholar
  35. 35.
    M. Triesscheijn, M. Ruevekamp, M. Aalders, P. Bass, and F. A. Stewart. Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochem. Photobiol. 81:1161–1167 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    R. Brasch, and K. Turetschek. MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: a status report. Eur J Radiol. 34:148–155 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    R. M. Stephen, and R. J. Gillies. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm. Res. 24:1172–1185 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Dvorak, J. Nagy, J. Dvorak, and A. Dvorak. Identification and characterization of the blood vessels of solid tumor that are leaky to circulating macromolecules. Am. J. Pathol. 133:95–109 (1988).PubMedGoogle Scholar
  39. 39.
    Y. Zong, X. Wang, K. C. Goodrich, A. M. Mohs, D. L. Parker, and Z. R. Lu. Contrast-enhanced MRI with new biodegradable macromolecular Gd (III) complexes in tumor bearing mice. Magn Reson Med. 53:835–842 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anagha Vaidya
    • 1
  • Yongen Sun
    • 1
  • Yi Feng
    • 1
  • Lyska Emerson
    • 2
  • Eun-Kee Jeong
    • 3
  • Zheng-Rong Lu
    • 1
    • 4
  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Department of PathologyUniversity of UtahSalt Lake CityUSA
  3. 3.Department of RadiologyUniversity of UtahSalt Lake CityUSA
  4. 4.421 Wakara WaySalt Lake CityUSA

Personalised recommendations