Pharmaceutical Research

, 25:2074

Doxorubicin Loaded pH-sensitive Micelle: Antitumoral Efficacy against Ovarian A2780/DOXR Tumor

  • Dongin Kim
  • Eun Seong Lee
  • Kyeongsoon Park
  • Ick Chan Kwon
  • You Han Bae
Research Paper

DOI: 10.1007/s11095-008-9603-6

Cite this article as:
Kim, D., Lee, E.S., Park, K. et al. Pharm Res (2008) 25: 2074. doi:10.1007/s11095-008-9603-6

Abstract

Purpose

To evaluate pH-sensitive mixed micelles for multidrug resistant (MDR) ovarian tumor targeting and optical imaging of solid tumors.

Method

Doxorubicin (DOX) encapsulated pH-sensitive mixed micelles composed of poly(l-histidine)(MW 5K)-b-PEG(MW 2K) and poly(l-lactic acid)(3K)-b-PEG (2K)-folate (PHSM-f) were prepared. Folate receptor-mediated endocytosis, drug uptake, endosomal disruption and cell viability were investigated at the cellular level. For in vivo tumor growth inhibition tests, multidrug resistant ovarian A2780/DOXR xenografted nude mice were used. Optical imaging was performed by using a Cy5.5 fluorescence dye-labeled mixed micelle system. Cy5.5 fluorescence intensity at the tumor site was measured in KB epidermoid xenografted nude mice.

Results

In vitro cell viability and drug distribution in the cytoplasm demonstrated the significantly superior efficacy of PHSM-f to free DOX and a control sample of DOX loaded pH-insensitive micelle composed of poly(l-lactic acid)(3K)-b-PEG(2K)/poly(l-lactic acid)(3K)-b-PEG(2K)-folate (80/20 wt/wt%) (PHIM-f). The mechanisms of these results were proved by folate receptor mediated endocytosis of micelle and endosomal disruption function by it. In addition, the optical imaging demonstrated the future application of the diagnositic area. PHSM-f inhibited the growth of multidrug resistant ovarian tumors efficiently in mice, with minimum weight loss.

Conclusions

The pH-sensitive mixed micelle system demonstrates effective antitumor efficacy against the multidrug resistant ovarian tumor A2780/DOXR.

KEY WORDS

folic acid micelle multidrug resistance ovarian cancer poly(l-histidine) 

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dongin Kim
    • 1
  • Eun Seong Lee
    • 1
  • Kyeongsoon Park
    • 2
  • Ick Chan Kwon
    • 2
  • You Han Bae
    • 1
  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Biomedical Research CenterKorea Institute of Science and TechnologySeoulSouth Korea

Personalised recommendations