Pharmaceutical Research

, 25:1861

Selective Contrast Enhancement of Individual Alzheimer’s Disease Amyloid Plaques Using a Polyamine and Gd-DOTA Conjugated Antibody Fragment Against Fibrillar Aβ42 for Magnetic Resonance Molecular Imaging

  • Muthu Ramakrishnan
  • Thomas M. Wengenack
  • Karunya K. Kandimalla
  • Geoffry L. Curran
  • Emily J. Gilles
  • Marina Ramirez-Alvarado
  • Joseph Lin
  • Michael Garwood
  • Clifford R. Jack Jr.
  • Joseph F. Poduslo
Research Paper

ABSTRACT

Purpose

The lack of an in vivo diagnostic test for AD has prompted the targeting of amyloid plaques with diagnostic imaging probes. We describe the development of a contrast agent (CA) for magnetic resonance microimaging that utilizes the F(ab′)2 fragment of a monoclonal antibody raised against fibrillar human Aβ42

Methods

This fragment is polyamine modified to enhance its BBB permeability and its ability to bind to amyloid plaques. It is also conjugated with a chelator and gadolinium for subsequent imaging of individual amyloid plaques

Results

Pharmacokinetic studies demonstrated this 125I-CA has higher BBB permeability and lower accumulation in the liver and kidney than F(ab′)2 in WT mice. The CA retains its ability to bind Aβ40/42 monomers/fibrils and also binds to amyloid plaques in sections of AD mouse brain. Intravenous injection of 125I-CA into the AD mouse demonstrates targeting of amyloid plaques throughout the cortex/hippocampus as detected by emulsion autoradiography. Incubation of AD mouse brain slices in vitro with this CA resulted in selective enhancement on T1-weighted spin-echo images, which co-register with individual plaques observed on spatially matched T2-weighted spin-echo image

Conclusions

Development of such a molecular probe is expected to open new avenues for the diagnosis of AD.

KEY WORDS

Alzheimer’s disease amyloid plaques antibody fragments contrast agent magnetic resonance imaging 

REFERENCES

  1. 1.
    D. J. Selkoe. Clearing the brain’s amyloid cobwebs. Neuron. 32:177–180 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    W. E. Klunk, H. Engler, A. Nordberg, Y. M. Wang, G. Blomqvist, D. P. Holt, M. Bergstrom, I. Savitcheva, G. F. Huang, S. Estrada, B. Ausen, M. L. Debnath, J. Barletta, J. C. Price, J. Sandell, B. J. Lopresti, A. Wall, P. Koivisto, G. Antoni, C. A. Mathis, and B. Langstrom. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55:306–319 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    N. P. Verhoeff, A. A. Wilson, S. Takeshita, L. Trop, D. Hussey, K. Singh, H. F. Kung, M. P. Kung, and S. Houle. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry. 12:584–595 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    G. W. Small, V. Kepe, L. M. Ercoli, P. Siddarth, S. Y. Bookheimer, K. J. Miller, H. Lavretsky, A.C. Burggren, G.M. Cole, H.V. Vinters, P.M. Thompson, S.C. Huang, N. Satyamurthy, M.E. Phelps, and J.R. Barrio. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355:2652–2663 (2006).PubMedCrossRefGoogle Scholar
  5. 5.
    C. R. Jack, T. M. Wengenack, D. A. Reyes, M. Garwood, G. L. Curran, B. J. Borowski, J. Lin, G. M. Preboske, S. S. Holasek, G. Adriany, and J. F. Poduslo. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J. Neurosci. 25:10041–10048 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    J. F. Poduslo, T. M. Wengenack, G. L. Curran, T. Wisniewski, E. M. Sigurdsson, S. I. Macura, B. J. Borowski, and C. R. Jr Jack. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol. Dis. 11:315–329 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Z. Wadghiri, E. M. Sigurdsson, M. Sadowski, J. I. Elliott, Y. S. Li, H. Scholtzova, C. Y. Tang, G. Aguinaldo, M. Pappolla, K. Duff, T. Wisniewski, and D. H. Turnbull. Detection of Alzheimer’s amyloid in Transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50:293–302 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Benveniste, G. Einstein, K. R. Kim, C. Hulette, and G. A. Johnson. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci U S A. 96:14079–14084 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Helpern, S. P. Lee, M. F. Falangola, V. V. Dyakin, A. Bogart, B. Ardekani, K. Duff, C. Branch, T. Wisniewski, M. J. de Leon, O. Wolf, J. O’Shea, and R. A. Nixon. MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease. Magn. Reson. Med. 51:794–798 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Vanhoutte, I. Dewachter, P. Borghgraef, F. Van Leuven, and A. Van der Linden. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med. 53:607–613 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    C. R. Jr Jack, M. Garwood, T. M. Wengenack, B. Borowski, G. L. Curran, J. Lin, G. Adriany, O. H. Grohn, R. Grimm, and J. F. Poduslo. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn. Reson. Med. 52:1263–1271 (2004).CrossRefGoogle Scholar
  12. 12.
    J. F. Poduslo, G. L. Curran, and C. T. Berg. Macromolecular Permeability across the Blood–Nerve and Blood–Brain Barriers. Proc. Natl. Acad. Sci. U S A. 91:5705–5709 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    J. F. Poduslo, and G. L. Curran. Amyloid beta peptide as a vaccine for Alzheimer’s disease involves receptor-mediated transport at the blood–brain barrier. Neuroreport. 12:3197–3200 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    J. F. Poduslo, M. Ramakrishnan, S. S. Holasek, M. Ramirez-Alvarado, K. K. Kandimalla, E. J. Gilles, G. L. Curran, and T. M. Wengenack. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 102:420–433 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Holcomb, M. N. Gordon, E. McGowan, X. Yu, S. Benkovic, P. Jantzen, K. Wright, I. Saad, R. Mueller, D. Morgan, S. Sanders, C. Zehr, K. O’Campo, J. Hardy, C. M. Prada, C. Eckman, S. Younkin, K. Hsiao, and K. Duff. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Med. 4:97–100 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. S. Yang, and G. Cole. Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science. 274:99–102 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    P. M. Smith-Jonesand, and D. B. Solit. Generation of DOTA-conjugated antibody fragments for radioimmunoimaging. Methods Enzymol. 386:262–275 (2004).CrossRefGoogle Scholar
  18. 18.
    U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    J. F. Poduslo, G. L. Curran, T. M. Wengenack, B. Malester, and K. Duff. Permeability of proteins at the blood–brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease. 8:555–567 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    J. B. Bassingthwaighte, F. P. Chinard, C. Crone, C. A. Goresky, N. A. Lassen, R. S. Reneman, and K. L. Zierler. Terminology for mass transport and exchange. Am. J. Physiol. 250:H539–545 (1986).PubMedGoogle Scholar
  21. 21.
    J. F. Poduslo, G. L. Curran, T. M. Wengenack, B. Malester, and K. Duff. Permeability of proteins at the blood–brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 8:555–567 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    J. F. Poduslo, G. L. Curran, J. A. Peterson, D. J. McCormick, A. H. Fauq, M. A. Khan, and T. M. Wengenack. Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood–brain barrier permeability, and in vivo targeting to Alzheimer’s disease amyloid plaques. Biochem. 43:6064–6075 (2004).CrossRefGoogle Scholar
  23. 23.
    R. A. Robb. A software system for interactive and quantitative analysis of biomedical images. In K. H. F. Hohne, and S. M. Pizer (eds.), 3D Imaging in Medicine. Springer, Berlin, 1990, pp. 333–361.Google Scholar
  24. 24.
    M. Marjanska, G. L. Curran, T. M. Wengenack, P. G. Henry, R. L. Bliss, J. F. Poduslo, C. R. Jr Jack, K. Ugurbil, and M. Garwood. Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc. Natl. Acad Sci. U S A. 102:11906–11910 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    C. R. Jr Jack, T. M. Wengenack, D. A. Reyes, M. Garwood, G. L. Curran, B. J. Borowski, J. Lin, G. M. Preboske, S. S. Holasek, G. Adriany, and J. F. Poduslo. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J. Neurosci. 25:10041–10048 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Tamura, K. Hamajima, K. Matsui, S. Yanoma, M. Narita, N. Tajima, K. Q. Xin, D. Klinman, and K. Okuda. The F(ab′)2 fragment of an Abeta-specific monoclonal antibody reduces Abeta deposits in the brain. Neurobiol. Dis. 20:541–549 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Bergmann, R. Kacenelenbogen, and A. Vizet. Plasma clearance, tissue distribution and catabolism of cationized albumins with increasing isoelectric points in the rat. Clin Sci (Lond). 67:35–43 (1984).Google Scholar
  28. 28.
    W. M. Pardridge. Strategies for drug delivery through the blood–brain barrier. Neurobiol Aging. 10:636–637 (1989)(discussion 648–650).PubMedCrossRefGoogle Scholar
  29. 29.
    R. E. Majocha, J. M. Reno, R. P. Friedland, C. VanHaight, L. R. Lyle, and C. A. Marotta. Development of a monoclonal antibody specific for beta/A4 amyloid in Alzheimer’s disease brain for application to in vivo imaging of amyloid angiopathy. J. Nucl Med. 33:2184–2189 (1992).PubMedGoogle Scholar
  30. 30.
    R. P. Friedland, J. Shi, J. C. Lamanna, M. A. Smith, and G. Perry. Prospects for noninvasive imaging of brain amyloid beta in Alzheimer’s disease. Ann. N Y Acad Sci. 903:123–128 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    H. J. Lee, Y. Zhang, C. Zhu, K. Duff, and W. M. Pardridge. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical. J.Cereb.Blood Flow Metab. 22:223–231 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Kumar, H. Wu, J. L. McBride, K. E. Jung, M. H. Kim, B. L. Davidson, S. K. Lee, P. Shankar, and N. Manjunath. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448:39–43 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    L. N. Patel, J. L. Zaro, and W.C. Shen. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res. 24:1977–1992 (2007).PubMedCrossRefGoogle Scholar
  34. 34.
    R.J. Boado, Y. Zhang, C. F. Xia, and W. M. Pardridge. Fusion antibody for Alzheimer’s disease with bidirectional transport across the blood–brain barrier and abeta fibril disaggregation. Bioconjug Chem. 18:447–455 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Muthu Ramakrishnan
    • 1
  • Thomas M. Wengenack
    • 1
  • Karunya K. Kandimalla
    • 1
    • 2
  • Geoffry L. Curran
    • 1
  • Emily J. Gilles
    • 1
  • Marina Ramirez-Alvarado
    • 3
  • Joseph Lin
    • 4
  • Michael Garwood
    • 4
  • Clifford R. Jack Jr.
    • 5
  • Joseph F. Poduslo
    • 1
  1. 1.Molecular Neurobiology Laboratory, Departments of Neurology and NeuroscienceMayo Clinic College of MedicineRochesterUSA
  2. 2.College of Pharmacy and Pharmaceutical SciencesFlorida A&M UniversityTallahasseeUSA
  3. 3.Department of Biochemistry and Molecular BiologyMayo Clinic College of MedicineRochesterUSA
  4. 4.Center for Magnetic Resonance Research and Department of RadiologyUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of RadiologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations