Pharmaceutical Research

, Volume 25, Issue 9, pp 2117–2124

Chemoprevention of Pancreatic Cancer: Characterization of Par-4 and its Modulation by 3,3′ Diindolylmethane (DIM)

  • Asfar Sohail Azmi
  • Aamir Ahmad
  • Sanjeev Banerjee
  • Vivek M. Rangnekar
  • Ramzi M. Mohammad
  • Fazlul H. Sarkar
 

Abstract

Purpose

Cancer chemoprevention is defined as the use of natural, synthetic, or biological agents to suppress, reverse or prevent the carcinogenic process from turning into aggressive cancer. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic protein that selectively induces apoptosis in prostate cancer cells. However, its role in other malignancies has not been fully explored. This study tries to identify the functional significance of Par-4 in pancreatic cancer.

Methods

Multiple molecular techniques such as Western blot analysis, trypan blue assay for cell viability, MTT assay for cell growth inhibition and Histone/DNA ELISA for apoptosis were used.

Results

Western blot analysis revealed that 3,3′-diindolylmethane (DIM) a chemopreventive agent, specifically its more bioavailable formulation, B-DIM, at low doses (20 μmol/L) induces Par-4, in L3.6pl and Colo-357 pancreatic cancer cells. At similar doses, DIM reduced cell viability and caused cell growth inhibition and apoptosis. Moreover, DIM pre-treatment sensitized the cells to cytotoxic action of chemotherapeutic drug gemcitabine through up-regulation of Par-4.

Conclusion

The induction of Par-4 is indirectly related to increased sensitivity and cell death through apoptosis. To our knowledge the results reported here showed, for the first time, the induction of Par-4 by chemopreventive agents, in general, and DIM, in particular, in pancreatic cancer cells in vitro.

KEY WORDS

apoptosis B-DIM chemoprevention pancreatic cancer Par-4 

References

  1. 1.
    D. Li, K. Xie, R. Wolff, and J. L. Abbruzzese. Pancreatic cancer. Lancet. 363:1049–1057 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Bray, R. Sankila, J. Ferlay, and D. M. Parkin. Estimates of cancer incidence and mortality in Europe in 1995. Eur. J. Cancer. 38:99–166 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    C. J. Wray, S. A. Ahmad, J. B. Matthews, and A. M. Lowy. Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology. 128:1626–1641 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    H. G. Beger, B. Rau, F. Gansauge, B. Poch, and K. H. Link. Treatment of pancreatic cancer: challenge of the facts. World J. Surg. 27:1075–1084 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    J. D. Berlin, and M. Rothenberg. Chemotherapy for resectable and advanced pancreatic cancer. Oncology (Williston Park). 15:1241–1249 (2001) 1254.Google Scholar
  6. 6.
    S. M. Cowgill, and P. Muscarella. The genetics of pancreatic cancer. Am. J. Surg. 186:279–286 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Rozenblum, M. Schutte, M. Goggins, S. A. Hahn, S. Panzer, M. Zahurak, S. N. Goodman, T. A. Sohn, R. H. Hruban, C. J. Yeo, and S. E. Kern. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 57:1731–1734 (1997).PubMedGoogle Scholar
  8. 8.
    C. Sun, T. Yamato, T. Furukawa, Y. Ohnishi, H. Kijima, and A. Horii. Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol. Rep. 8:89–92 (2001).PubMedGoogle Scholar
  9. 9.
    K. Grunewald, J. Lyons, A. Frohlich, H. Feichtinger, R. A. Weger, G. Schwab, J. W. Janssen, and C. R. Bartram. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int. J. Cancer. 43:1037–1041 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    C. A. Moskaluk, R. H. Hruban, and S. E. Kern. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 57:2140–2143 (1997).PubMedGoogle Scholar
  11. 11.
    D. Shibata, G. Capella, and M. Perucho. Mutational activation of the c-K-ras gene in human pancreatic carcinoma. Baillieres Clin. Gastroenterol. 4:151–169 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Almoguera, D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 53:549–554 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    C. M. Barton, S. L. Staddon, C. M. Hughes, P. A. Hall, C. O’Sullivan, G. Kloppel, B. Theis, R. C. Russell, J. Neoptolemos, and R. C. Williamson. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br. J. Cancer. 64:1076–1082 (1991).PubMedGoogle Scholar
  14. 14.
    C. Caldas, S. A. Hahn, L. T. da Costa, M. S. Redston, M. Schutte, A. B. Seymour, C. L. Weinstein, R. H. Hruban, C. J. Yeo, and S. E. Kern. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 8:27–32 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    E. J. Bernhard, W. G. McKenna, A. D. Hamilton, S. M. Sebti, Y. Qian, J. M. Wu, and R. J. Muschel. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res. 58:1754–1761 (1998).PubMedGoogle Scholar
  16. 16.
    J. Zhao, and R. N. Buick. Regulation of transforming growth factor beta receptors in H-ras oncogene-transformed rat intestinal epithelial cells. Cancer Res. 55:6181–6188 (1995).PubMedGoogle Scholar
  17. 17.
    K. Venkatasubbarao, M. M. Ahmed, M. Mohiuddin, C. Swiderski, E. Lee, W. R. Gower Jr., K. F. Salhab, P. McGrath, W. Strodel, and J. W. Freeman. Differential expression of transforming growth factor beta receptors in human pancreatic adenocarcinoma. Anticancer Res. 20:43–51 (2000).PubMedGoogle Scholar
  18. 18.
    M. Barradas, A. Monjas, M. T. az-Meco, M. Serrano, and J. Moscat. The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J. 18:6362–6369 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    S. F. Sells, D. P. Wood Jr., S. S. Joshi-Barve, S. Muthukumar, R. J. Jacob, S. A. Crist, S. Humphreys, and V. M. Rangnekar. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ. 5:457–466 (1994).PubMedGoogle Scholar
  20. 20.
    V. M. Rangnekar. Apoptosis mediated by a novel leucine zipper protein Par-4. Apoptosis. 3:61–66 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Nalca, S. G. Qiu, N. El-Guendy, S. Krishnan, and V. M. Rangnekar. Oncogenic Ras sensitizes cells to apoptosis by Par-4. J. Biol. Chem. 274:29976–29983 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    M. T. az-Meco, M. M. Municio, S. Frutos, P. Sanchez, J. Lozano, L. Sanz, and J. Moscat. The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell. 86:777–786 (1996).CrossRefGoogle Scholar
  23. 23.
    M. M. Ahmed, D. Sheldon, M. A. Fruitwala, K. Venkatasubbarao, E. Y. Lee, S. Gupta, C. Wood, M. Mohiuddin, and W. E. Strodel. Downregulation of PAR-4, a pro-apoptotic gene, in pancreatic tumors harboring K-ras mutation. Int. J. Cancer. 122:63–70 (2008).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Li, Z. Wang, D. Kong, S. Murthy, Q. P. Dou, S. Sheng, G. P. Reddy, and F. H. Sarkar. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem. 282:21542–21550 (2007).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Abdelrahim, K. Newman, K. Vanderlaag, I. Samudio, and S. Safe. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis. 27:717–728 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    C. J. Bruns, M. T. Harbison, H. Kuniyasu, I. Eue, and I. J. Fidler. In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1:50–62 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    J. C. Reed. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6 (1994).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Das, D. Chendil, S. Dey, M. Mohiuddin, M. Mohiuddin, J. Milbrandt, V. M. Rangnekar, and M. M. Ahmed. Ionizing radiation down-regulates p53 protein in primary Egr-1−/−mouse embryonic fibroblast cells causing enhanced resistance to apoptosis. J. Biol. Chem. 276:3279–3286 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    K. A. West, S. S. Castillo, and P. A. Dennis. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist. Updat. 5:234–248 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    B. N. Fahy, M. G. Schlieman, S. Virudachalam, and R. J. Bold. Inhibition of AKT abrogates chemotherapy-induced NF-kappaB survival mechanisms: implications for therapy in pancreatic cancer. J. Am. Coll. Surg. 198:591–599 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    V. M. Bondar, B. Sweeney-Gotsch, M. Andreeff, G. B. Mills, and D. J. McConkey. Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol. Cancer Ther. 1:989–997 (2002).PubMedGoogle Scholar
  32. 32.
    J. R. Testa, and A. Bellacosa. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA. 98:10983–10985 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Asfar Sohail Azmi
    • 1
  • Aamir Ahmad
    • 1
  • Sanjeev Banerjee
    • 1
  • Vivek M. Rangnekar
    • 2
  • Ramzi M. Mohammad
    • 3
  • Fazlul H. Sarkar
    • 1
  1. 1.Department of Pathology, Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  2. 2.Department of Radiation MedicineUniversity of KentuckyLexingtonUSA
  3. 3.Department of Internal Medicine, Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA

Personalised recommendations