Advertisement

Pharmaceutical Research

, Volume 25, Issue 7, pp 1696–1701 | Cite as

What is a Suitable Dissolution Method for Drug Nanoparticles?

  • Desmond Heng
  • David J. Cutler
  • Hak-Kim Chan
  • Jimmy Yun
  • Judy A. Raper
Research Paper

Abstract

Purpose

Many existing and new drugs fail to be fully utilized because of their limited bioavailability due to poor solubility in aqueous media. Given the emerging importance of using nanoparticles as a promising way to enhance the dissolution rate of these drugs, a method must be developed to adequately reflect the rate-change due to size reduction. At present, there is little published work examining the suitability of different dissolution apparatus for nanoparticles.

Methods

Four commonly-used methods (the paddle, rotating basket and flow-through cell from the US Pharmacopia, and a dialysis method) were employed to measure the dissolution rates of cefuroxime axetil as a model for nanodrug particles.

Results

Experimental rate ratios between the nanoparticles and their unprocessed form were 6.95, 1.57 and 1.00 for the flow-through, basket and paddle apparatus respectively. In comparison, the model-predicted value was 7.97. Dissolution via dialysis was rate-limited by the membrane.

Conclusions

The data showed the flow-through cell to be unequivocally the most robust dissolution method for the nanoparticulate system. Furthermore, the dissolution profiles conform closely to the classic Noyes–Whitney model, indicating that the increase in dissolution rate as particles become smaller results from the increase in surface area and solubility of the nanoparticles.

Key words

cefuroxime axetil drug nanoparticles Noyes–Whitney equation poorly water-soluble drug powder dissolution apparatus 

Notes

Acknowledgements

The authors are grateful to Lee Ford-Griffiths (Particle & Surface Sciences Pty. Ltd.) for the BET analysis and staff of the Electron Microscope Unit (The University of Sydney) for kind usage of the field emission scanning electron microscope and the X-ray powder diffractometer. This work was supported by a grant from the Australian Research Council (ARC Linkage Project LP 0561675 with Nanomaterials Technology Pty. Ltd). One of the authors (JAR) is currently at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    A. Dokoumetzidis, and P. Macheras. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int. J. Pharm. 321:1–11 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    B. R. Rohrs. Dissolution method development for poorly soluble compounds. Dissolution Technologies. 8:1–5 (2001).Google Scholar
  3. 3.
    G. H. Zhang, W. A. Vadino, T. T. Yang, W. P. Cho, and I. A. Chaudry. Evaluation of the flow-through cell dissolution apparatus: effects of flow rate, glass beads and tablet position on drug release from different types of tablets. Drug Dev. Ind. Pharm. 20:2063–2078 (1994).CrossRefGoogle Scholar
  4. 4.
    A. A. Noyes, and W. R. Whitney. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19:930–934 (1897).CrossRefGoogle Scholar
  5. 5.
    M. Gibaldi, S. Feldman, R. Wynn, and N. D. Weiner. Dissolution rates in surfactant solutions under stirred and static conditions. J. Pharm. Sci. 57:787–791 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    W. I. Higuchi. Diffusional models useful in biopharmaceutics. J. Pharm. Sci. 56:315–324 (1967).CrossRefGoogle Scholar
  7. 7.
    P. Veng Pedersen, and K. F. Brown. Experimental evaluation of three single-particle dissolution models. J. Pharm. Sci. 65:1442–1447 (1976).CrossRefGoogle Scholar
  8. 8.
    B. Y. Shekunov, P. Chattopadhyay, J. Seitzinger, and R. Huff. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 23:196–204 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    M. H. El-Shabouri. Nanoparticles for improving the dissolution and oral bioavailability of spironolactone, a poorly-soluble drug. STP Pharma Sciences. 12:97–101 (2002).Google Scholar
  10. 10.
    E. Reverchon, and R. Adami. Nanomaterials and supercritical fluids. J. Supercrit. Fluids. 37:1–22 (2006).CrossRefGoogle Scholar
  11. 11.
    H. Eerikainen, W. Watanabe, E. I. Kauppinen, and P. P. Ahonen. Aerosol flow reactor method for synthesis of drug nanoparticles. Eur. J. Pharm. Biopharm. 55:357–360 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    J. F. Chen, J. Y. Zhang, Z. G. Shen, J. Zhong, and J. Yun. Preparation and characterisation of amorphous cefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolvent precipitation. Ind. Eng. Chem. Res. 45:8723–8727 (2006).CrossRefGoogle Scholar
  13. 13.
    M. A. Lopez-Quintela. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 8:137–144 (2003).CrossRefGoogle Scholar
  14. 14.
    B. K. Johnson, and R. K. Prud’homme. Chemical processing and micromixing in confined impinging jets. Alchem. J. 49:2264–2282 (2003).Google Scholar
  15. 15.
    R. H. Muller and J. A. H. Junghanns. Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In V. P. Torchilin (ed.), Nanoparticulates as Drug Carriers, Imperial College Press, London, 2006, pp. 308–309.Google Scholar
  16. 16.
    R. B. Gupta. Fundamentals of drug nanoparticles. In R. B. Gupta, and U. B. Kompella (eds.), Drugs and the Pharmaceutical Sciences: Nanoparticle Technology for Drug Delivery, Taylor and Francis, New York, 2006, pp. 6–9.Google Scholar
  17. 17.
    L. M. Katz. Nanotechnology and applications in cosmetics: general overview. American Chemical Society Symposium Series (2007). 961:193–200 (2007).Google Scholar
  18. 18.
    C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25 (1997).CrossRefGoogle Scholar
  19. 19.
    I. Kanfer. Report on the international workshop on the biopharmaceutics classification system (BCS): scientific and regulatory aspects in practice. J. Pharm. Pharm. Sci. 5:1–4 (2002).PubMedGoogle Scholar
  20. 20.
    N. Rasenack, H. Hartenhauer, and B. W. Muller. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int. J. Pharm. 254:137–145 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Finholt. Influence of formulation on dissolution rate. In L. J. Leeson, and J. T. Carstensen (eds.), Dissolution Technology, The Industrial Pharmaceutical Technology Section of the Academy of Pharmaceutical Science, Washington, 1974, pp. 106–146.Google Scholar
  22. 22.
    E. Leo, R. Cameroni, and F. Forni. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int. J. Pharm. 180:23–30 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Nicklasson, A. Orbe, J. Lindberg, B. Borga, A. B. Magnusson, G. Nilsson, R. Ahlgren, and L. Jacobsen. A collaborative study of the in vitro dissolution of phenacetin crystals comparing the flow through method with the USP paddle method. Int. J. Pharm. 69:255–264 (1991).CrossRefGoogle Scholar
  24. 24.
    B. Wennergren, J. Lindberg, M. Nicklasson, G. Nilsson, G. Nyberg, R. Ahlgren, C. Persson, and B. Palm. A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. Int. J. Pharm. 53:35–41 (1989).CrossRefGoogle Scholar
  25. 25.
    K. Gjellan, A. B. Magnusson, R. Ahlgren, K. Callmer, D. F. Christensen, U. Espmarker, L. Jacobsen, K. Jarring, G. Lundin, G. Nilsson, and J. O. Waltersson. A collaborative study of the in vitro dissolution of acetylsalicylic acid gastro-resistant capsules comparing the flow-through cell method with the USP paddle method. Int. J. Pharm. 151:81–90 (1997).CrossRefGoogle Scholar
  26. 26.
    H. Moller. Dissolution testing of different dosage forms using the flow-through method. Pharm. Ind. 45:617–622 (1983).Google Scholar
  27. 27.
    H. Moller, and E. Wirbitzki. Special cases of dissolution testing using the flow-through system. STP Pharma Sciences. 6:657–662 (1990).Google Scholar
  28. 28.
    F. Langenbucher, D. Benz, W. Kurth, H. Moller, and M. Otz. Standardized flow-cell method as an alternative to existing pharmacopoeial dissolution testing. Pharm. Ind. 51:1276–1281 (1989).Google Scholar
  29. 29.
    A. D. Karande, and P. G. Yeole. Comparative assessment of different dissolution apparatus for floating drug delivery systems. Dissolution Technologies. 13:20–23 (2006).Google Scholar
  30. 30.
    M. C. Gohel, P. R. Mehta, R. K. Dave, and N. H. Bariya. A more relevant dissolution method for evaluation of floating drug delivery system. Dissolution Technologies. 11:22–25 (2004).Google Scholar
  31. 31.
    P. P. Sanghvi, J. S. Nambiar, A. J. Shukla, and C. C. Collins. Comparison of three dissolution devices for evaluating drug release. Drug Dev. Ind. Pharm. 20:961–980 (1994).CrossRefGoogle Scholar
  32. 32.
    J. Hu, A. Kyad, V. Ku, P. Zhou, and N. Cauchon. A comparison of dissolution testing on lipid soft gelatin capsules using USP apparatus 2 and apparatus 4. Dissolution Technologies. 12:6–9 (2005).Google Scholar
  33. 33.
    E. Beyssac, and J. Lavigne. Dissolution study of active pharmaceutical ingredients using the flow through apparatus USP 4. Dissolution Technologies. 12:23–25 (2005).Google Scholar
  34. 34.
    S. N. Bhattachar, J. A. Wesley, A. Fioritto, P. J. Martin, and S. R. Babu. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus. Int. J. Pharm. 236:135–143 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    B. A. Hendriksen. Characterization of calcium fenoprofen. 1. Powder dissolution rate and degree of crystallinity. Int. J. Pharm. 60:243–252 (1990).CrossRefGoogle Scholar
  36. 36.
    J. Hecq, M. Deleers, D. Fanara, H. Vranckx, and K. Amighi. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299:167–177 (2005).PubMedCrossRefGoogle Scholar
  37. 37.
    J. L. Baxter, J. Kukura, and F. J. Muzzio. Shear-induced variability in the United States pharmacopoeia apparatus 2: modifications to the existing system. AAPS J. 7:E857–E864 (2006).PubMedCrossRefGoogle Scholar
  38. 38.
    D. H. Adams, M. J. Wood, and I. D. Farrell. Oral cefuroxime axetil: clinical pharmacology and comparative dose studies in urinary tract infection. J. Antimicrob. Chemother. 16:359–366 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    Micromeritics. Instruction manual (Multivolume Pycnometer 1305) for determining skeletal density and volume of powders, porous materials, and irregularly shaped solid objects, Micromeritics Instrument Corporation, USA, 1992.Google Scholar
  40. 40.
    D. Horn, and J. Rieger. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 40:4330–4361 (2001).CrossRefGoogle Scholar
  41. 41.
    A. Tandya, F. Dehghani, and N. R. Foster. Micronisation of cyclosporine using dense gas techniques. J. Supercrit. Fluids. 37:272–278 (2006).CrossRefGoogle Scholar
  42. 42.
    P. J. Missel, L. E. Stevens, and J. W. Mauger. Reexamination of convective diffusion/drug dissolution in a laminar flow channel: accurate prediction of dissolution rate. Pharm. Res. 21:2300–2306 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Nicklasson, B. Wennergren, J. Lindberg, C. Persson, R. Ahlgren, B. Palm, A. Pettersson, and L. Wenngren. A collaborative in vitro dissolution study using the flow-through method. Int. J. Pharm. 37:195–202 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Desmond Heng
    • 1
    • 3
  • David J. Cutler
    • 1
  • Hak-Kim Chan
    • 1
  • Jimmy Yun
    • 3
  • Judy A. Raper
    • 2
  1. 1.Advanced Drug Delivery Group, Faculty of Pharmacy, A15The University of SydneySydneyAustralia
  2. 2.Department of Chemical EngineeringUniversity of Missouri-RollaRollaUSA
  3. 3.Nanomaterials Technology Pty. Ltd.SingaporeSingapore

Personalised recommendations