Advertisement

Pharmaceutical Research

, Volume 25, Issue 9, pp 2135–2142 | Cite as

Suppression of NFκB and its Regulated Gene Products by Oral Administration of Green Tea Polyphenols in an Autochthonous Mouse Prostate Cancer Model

  • Imtiaz A. Siddiqui
  • Yogeshwer Shukla
  • Vaqar M. Adhami
  • Sami Sarfaraz
  • Mohammad Asim
  • Bilal Bin Hafeez
  • Hasan Mukhtar
Research Paper

Abstract

Purpose

This study examines the role of cell survival/apoptosis related proteins involved in NFκB signaling pathways and its associated events in GTP-induced chemoprevention of prostate cancer in TRAMP mice.

Methods

Mice were given 0.1% GTP as drinking fluid. Western blot and immunohistochemical analysis performed to examine NFκB and its regulated pathway in response to GTP.

Results

Our data demonstrated increased expression of NFκB, IKKα, IKKβ, RANK, NIK and STAT-3 in dorso-lateral prostate of TRAMP mice as a function of age and tumor growth and continuous GTP infusion for 32 weeks resulted in substantial reduction in these proteins. The levels of transcription factor osteopontin, a non-collagenous extracellular matrix protein, were also downregulated. Inhibition of NFκB signaling is known to activate apoptotic and inhibit anti-apoptotic proteins. Therefore, we analyzed Bax and Bcl2 levels in the dorsolateral prostate of TRAMP mice fed GTP and observed a shift in balance between Bax and Bcl2 favoring apoptosis.

Conclusions

Based on the data we suggest that oral consumption of GTP might inhibit osteopontin and NFκB signaling that may contribute to induction of apoptosis observed in GTP fed TRAMP mice.

Key words

green tea NFκB osteopontin RANK TRAMP 

Notes

Acknowledgements

This original work for author’s laboratory was supported by US PHS Grants RO1 CA 78809; RO1 CA 101039, RO1 CA 120451 and O’Brian center Grant P50 DK065303-01.

References

  1. 1.
    J. D. Albano, E. Ward, A. Jemal, R. Anderson, V. E. Cokkinides, T. Murray, J. Henley, J. Liff, and M. J. Thun. Cancer mortality in the United States by education level and race. J. Natl. Cancer Inst. 99:1384–1394 (2007).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun. Cancer statistics, 2007. CA. Cancer J. Clin. 57:43–66 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    A. W. Hsing, L. Tsao, and S. S. Devesa. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85:60–67 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Quinn and P. Babb. Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. Part I: international comparisons. BJU Int. 90:162–173 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    H. G. Sim and C. W. Cheng. Changing demography of prostate cancer in Asia. Eur. J. Cancer 41:834–845 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    D. N. Syed, N. Khan, F. Afaq, and H. Mukhtar. Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol. Biomarkers Prev. 16:2193–2203 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    I. A. Siddiqui, M. Saleem, V. M. Adhami, M. Asim, and H. Mukhtar. Tea beverage in chemoprevention and chemotherapy of prostate cancer. Acta. Pharmacol. Sin. 28:1392–1408 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    E. D. Canby-Hagino and I. M. Thompson. Mechanisms of disease: prostate cancer—a model for cancer chemoprevention in clinical practice. Nat. Clin. Pract. Oncol. 2:255–261 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    I. A. Siddiqui, F. Afaq, V. M. Adhami, and H. Mukhtar. Prevention of prostate cancer through custom tailoring of chemopreventive regimen. Chem. Biol. Interact. 171:122–132 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Bettuzzi, M. Brausi, F. Rizzi, G. Castagnetti, G. Peracchia, and A. Corti. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res. 66:1234–1240 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    M. G. Neill and N. E. Fleshner. An update on chemoprevention strategies in prostate cancer for 2006. Curr. Opin. Urol. 16:132–137 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    V. M. Adhami, I. A. Siddiqui, N. Ahmad, S. Gupta, and H. Mukhtar. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 64:8715–8722 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Liu, Y. Liu, and W. L. Lowe Jr. The role of phosphatidylinositol 3-kinase and the mitogen-activated protein kinases in insulin-like growth factor-I-mediated effects in vascular endothelial cells. Endocrinology 142:1710–1719 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Garrouste, M. Remacle-Bonnet, C. Fauriat, J. Marvaldi, J. Luis, and G. Pommier. Prevention of cytokine-induced apoptosis by insulin-like growth factor-I is independent of cell adhesion molecules in HT29-D4 colon carcinoma cells-evidence for a NF-kappaB-dependent survival mechanism. Cell Death Differ. 9:768–779 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    N. M. Greenberg, F. DeMayo, M. J. Finegold, D. Medina, W. D. Tilley, J. O. Aspinall, G. R. Cunha, A. A. Donjacour, R. J. Matusik, and J. M. Rosen. Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. U S A 92:3439–3443 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Gupta, K. Hastak, N. Ahmad, J. S. Lewin, and H. Mukhtar. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. U S A 98:10350–10355 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    I. A. Siddiqui, N. Zaman, M. H. Aziz, S. R. Reagan-Shaw, S. Sarfaraz, V. M. Adhami, N. Ahmad, S. Raisuddin, and H. Mukhtar. Inhibition of CWR22Rnu1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis. 27:833–839 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    A. C. Bharti, Y. Takada, S. Shishodia, and B. B. Aggarwal. Evidence that receptor activator of nuclear factor (NF)-kappaB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-kappaB-independent and TRAF6-dependent mechanism. J. Biol. Chem. 279:6065–6076 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    S. S. Forootan, C. S. Foster, V. R. Aachi, J. Adamson, P. H. Smith, K. Lin, and Y. Ke. Prognostic significance of osteopontin expression in human prostate cancer. Int. J. Cancer 118:2255–2261 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    B. E. Barton, J. G. Karras, T. F. Murphy, A. Barton, and H. F. Huang. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther. 3:11–20 (2004).PubMedGoogle Scholar
  21. 21.
    M. H. Aziz, H. T. Manoharan, D. R. Church, N. E. Dreckschmidt, W. Zhong, T. D. Oberley, G. Wilding, and A. K. Verma. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res. 67:8828–8838 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Shukla, G. T. Maclennan, S. R. Marengo, M. I. Resnick, and S. Gupta. Constitutive activation of P I3 K-Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model. Prostate. 64:224–239 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Suh, F. Payvandi, L. C. Edelstein, P. S. Amenta, W. X. Zong, C. Gélinas, and A. B. Rabson. Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate. 52:183–200 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Suh and A. B. Rabson. NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon? J. Cell Biochem. 91:100–117 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    B. B. Hafeez, S. Ahmed, N. Wang, S. Gupta, A. Zhang, and T. M. Haqqi. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB. Toxicol. Appl. Pharmacol. 216:11–19 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Bromberg. Signal transducers and activators of transcription as regulators of growth, apoptosis and breast development. Breast Cancer Res. 2:86–90 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Pedranzini, A. Leitch, and J. Bromberg. Stat3 is required for the development of skin cancer. J. Clin. Invest. 114:619–622 (2004).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Imtiaz A. Siddiqui
    • 1
  • Yogeshwer Shukla
    • 2
  • Vaqar M. Adhami
    • 1
  • Sami Sarfaraz
    • 1
  • Mohammad Asim
    • 1
  • Bilal Bin Hafeez
    • 1
  • Hasan Mukhtar
    • 1
    • 3
  1. 1.Department of DermatologyUniversity of WisconsinMadisonUSA
  2. 2.Proteomics LaboratoryIndian Institute of Toxicology ResearchLucknowIndia
  3. 3.Department of Dermatology, Medical Sciences CenterUniversity of WisconsinMadisonUSA

Personalised recommendations