Pharmaceutical Research

, Volume 25, Issue 7, pp 1583–1590 | Cite as

A Comparison of the Pulmonary Bioavailability of Powder and Liquid Aerosol Formulations of Salmon Calcitonin

  • Andrew Clark
  • Mei-chang Kuo
  • Stephen Newman
  • Peter Hirst
  • Gary Pitcairn
  • Matt Pickford
Research Paper



To compare the pulmonary pharmacokinetics and relative bioavailability of salmon calcitonin delivered as aqueous droplets, pH 6.6 and pH 4.8 with that of a spray dried powder in healthy volunteers.


Spray dried powders (1.6 μm [GSD 2.1]) containing 5% by wt. sCal, 6.25% human serum albumin, 73.55% mannitol and 15% citric acid/sodium citrate were prepared using a Buchi model 190 spray drier. Aqueous solutions were prepared by dissolving the spray dried powder at a sCal concentration of 1.25 mg/ml, pH was adjusted using 21 mM sodium hydroxide. Aerosols were delivered as part of a 4 way cross-over study to 16 healthy volunteers. The Nektar pulmonary delivery device was used to deliver the dry powder aerosol. A Salter nebulizer controlled by a Rosenthal dosimeter was used to deliver the aqueous aerosols. Miacalcin™ injection was used as the subcutaneous control. Dose delivered to the lung was estimated by gamma scintigraphy. Plasma concentrations of sCal were measured using a radioimmunoassay.


Aerosol size distributions were matched, 3.3 μm MMAD and ∼2.2 GSD. Inhaled flow rates were similar, although not equal, 5.8 and ∼9.8 l/min respectively for dry powder and liquid inhalations. Lung doses of sCal ranged from 53 to 88 μgm, peripheral lung doses from 25 to 51 μgm. Pharmacokinetic profiles and lung bioavailability relative to subcutaneous injection for all formulations were similar (not statistically significantly different p > 0.05), relative lung bioavailability ranged from 11% to 18%, estimates of relative bioavailability based on peripheral lung dose ranged from 20% to 33%.


The study showed no difference in pharmacokinetic profiles between the various aerosol dosage forms. pH of the aqueous solutions did not affect kinetics or relative bioavailability.

Key words

aerosol bioavailability deposition dry powder nebulizer salmon calcitonin 



Andersen impactor


area under the curve






dose content uniformity


geometric standard deviation


high pressure liquid chromatograph


mass median aerodynamic diameter




ratio, peripheral to central ratio


Nektar pulmonary delivery system


particle size distribution


salmon calcitonin


standard deviation


united States Pharmacopeia


volume median diameter


  1. 1.
    H. Folkesson, B. Westrom, and B. Karlsson. Permeability of the respiratory tract to different sized macromolecules after intratracheal instillation in young and adult rats. Acta Physiol. Scand 139:347–354 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Niven, F. Lott, A. Ip, and J. Cribbs. Pulmonary delivery of powders and solutions containing recombinant human granulocyte colony-stimulating factor (rhG-CSF) to the rabbit. Pharm. Res 11(8):1101–1109 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Kobayashi, S. Kondo, and K. Juni. Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats. Pharm. Res 13(1):80–83 (1996).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Kobayashi, S. Kondo, and K. Juni. Study on pulmonary delivery of salmon calcitonin in rats: effects of protease inhibitors and absorption enhancers. Pharm. Res 11(9):1239–1243 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Morita, A. Yamamoto, Y. Takaura, M. Hashida, and H. Sezaki. Improvement of pulmonary absorption of (Asu 1,7)—eel calcitonin by various protease inhibitors in rats. Pharm. Res 11(6):909–913 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    S. White, D. B. Bennett, S. Cheu, S. P. Conley, D. B. Guzek, S. Gray, J. Howard, R. Malcolmson, J. M. Parker, P. Roberts, N. Sadrzadeh, J. D. Schumacher, S. Seshadri, G. W. Sluggett, C. L. Stevenson, and N. J. Harper. Exubera: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol. Ther 7:896–906 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Patton. Mechanisms of macromolecule absorption by the lungs. Adv. Drug Deliv. Rev 19:3–36 (1996).CrossRefGoogle Scholar
  8. 8.
    J. D. Burr, J. M. Anthony, G. S. Axford, J. W. Etter, and A. E. Smith. Apparatus and methods for dispersing dry powder medicaments. US Patent 6(089):228 (2000).Google Scholar
  9. 9.
    A. R. Clark, C. B. Chambers, D. Muir, M. T. Newhouse, S. Paboojian, and C. Schuler. The effect of biphasic flow profiles on the deposition and clearance of coarse (6.5 mm) bolus aerosols. J. Aerosol. Med 20(1):75–82 (2007).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Berg, J. Svensson, and L. Asking. Determination of nebulizer droplet size distribution: A method based on impactor refrigeration. J. Aerosol. Med 20(2):97–104 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    A. R. Clark. The use of laser diffraction for the evaluation of the aerosol clouds generated by medical nebulizers. Int. J. Pharm 115:69–78 (1995).CrossRefGoogle Scholar
  12. 12.
    USP/NF, Physical tests and determinations: Aerosols, Vol 20 US XVII. US Pharmacopeia, Rockville, MD: US Pharmacopeial conventions, Inc. 1992, pp. 3158–3178Google Scholar
  13. 13.
    G. R. Pitcairn, and S. P. Newman. Radiolabelling of dry powder formulations. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory drug delivery VI, Interpharm Press, Buffalo Grove, 1998, pp. 397–399.Google Scholar
  14. 14.
    M. T. Newhouse, P. Hirst, S. Duddu, Y. Walter, T. Tarara, A. Clark, and J. Weers. Inhalation of a dry powder tobramycin Pulmosphere formulation in healthy volunteers. Chest 124:360–366 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    S. P. Newman, A. R. Clark, N. Talaee, and S. W. Clarke. Pressurised aerosol deposition in the human lung with and without an “open” spacer. Thorax 44:706–710 (1989).PubMedGoogle Scholar
  16. 16.
    G. R. Pitcairn, and S. P. Newman. Tissue attenuation corrections in gamma scintigraphy. J. Aerosol. Med 10:187–198 (1997).Google Scholar
  17. 17.
    S. P. Newman, P. R. Hirst, G. R. Pitcairn, and A. R. Clark. Understanding regional lung deposition in gamma scintigraphy. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery VI, Interpharm Press, Buffalo Grove, 1998, pp. 9–15.Google Scholar
  18. 18.
    F. Komada, S. Iwakawa, N. Yamamoto, H. Sakakibara, and K. Okumura. Intratracheal delivery of peptide and protein agents: absorption from solution and dry powder by rat lung. J. Pharm. Sci 83(6):863–867 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    L. Heinemann, and T. Heise. Current status of the development of inhaled insulin. Br. J. Diab. Vac. Dis 4(5):295–301 (2004).Google Scholar
  20. 20.
    K. Okumura, S. Iwaka, Y. Tsuguchika, S. Toshimitsu, and F. Komada. Intratracheal delivery of insulin absorption from solution an aerosol by rat. Int. J. Pharm 88:63–73 (1992).CrossRefGoogle Scholar
  21. 21.
    S. J. Farr, I. Gonda, and V. Licko. Physicochemical and physiological factors influence the effectiveness of inhaled insulin. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery VI, Interpharm Press, Buffalo Grove, 1998, pp. 25–33.Google Scholar
  22. 22.
    J. S. Patton, J. G. Bukar, and M. A. Eldon. Clinical pharmacokinetics and pharmacokinetics of inhaled insulin. Clin. Pharmacokinet 43(12):781–801 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrew Clark
    • 1
  • Mei-chang Kuo
    • 1
  • Stephen Newman
    • 2
    • 3
  • Peter Hirst
    • 2
    • 4
  • Gary Pitcairn
    • 2
    • 5
  • Matt Pickford
    • 2
    • 6
  1. 1.Nektar TherapeuticsSan CarlosUSA
  2. 2.Pharmaceutical Profiles Ltd.NottinghamEngland
  3. 3.Scientific ConsultantNottinghamEngland
  4. 4.Vectura Group plcNottinghamEngland
  5. 5.Pfizer Global R&DSandwichKent
  6. 6.AstraZenecaLoughboroughEngland

Personalised recommendations