Pharmaceutical Research

, Volume 25, Issue 6, pp 1377–1386 | Cite as

Myosin Light Chain Kinase Inhibition: Correction of Increased Intestinal Epithelial Permeability In Vitro

  • Linda M. Feighery
  • Sean W. Cochrane
  • Teresa Quinn
  • Alan W. Baird
  • Daniel O’Toole
  • Sian-Eleri Owens
  • Diarmuid O’Donoghue
  • Randall J. Mrsny
  • David J. Brayden
Research Paper



To examine whether myosin light chain kinase (MLCK) inhibitors can reduce intestinal epithelial permeability increases in vitro.

Materials and Methods

Isolated rat, mouse and human colonic tissue mucosae and Caco-2 monolayers were exposed to cytochalasin D (cD) and sodium caprate (C10), in the absence and presence of the MLCK inhibitors, ML-9 and D PIK. Transepithelial electrical resistance (TEER) and Papp of [14C]-mannitol or FITC-dextran 4000 (FD-4) were measured. Western blots were used to measure MLC phosphorylation.


Increases in Papp of [14C]-mannitol and decreases in TEER were induced by tight junction openers. These changes were attenuated by ML-9. D-PIK offset the FD-4 Papp increase induced by C10 in Caco-2 only, while ML-9 and PIK inhibited MLC directly. cD induced constriction of peri-junctional actin in Caco-2 monolayers, but this was prevented by ML-9. Although mannitol fluxes across colonic mucosae from dextran-sulphate (DSS)-treated mice were higher than control, they were not ameliorated by either ML-9 or PIK in vitro.


ML-9 inhibits paracellular permeability increases in several intestinal epithelial models. D-PIK reduced stimulated paracellular fluxes in Caco-2 monolayers, but not in tissue. Pre-established increases were not modified by two MLCK inhibitors in a mouse model of IBD.

Key words

caco-2 monolayers cytochalasins dextran sodium sulphate inflammatory bowel disease mouse models mannitol fluxes myosin light chain kinase transepithelial electrical resistance 


  1. 1.
    G. M. Cobrin, and M. T. Abreu. Defects in mucosal immunity leading to Crohn’s disease. Immunol. Rev. 206:277–295 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Welcker, A. Martin, P. Kolle, M. Siebeck, and M. Gross. Increased intestinal permeability in patients with inflammatory bowel disease. Eur. J. Med. Res. 9:456–460 (2004).PubMedGoogle Scholar
  3. 3.
    A. A. Lima, Y. M. Lyerly, T. D. Wilkins, D. J. Innes, and R. L. Guerrant. Effects of Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and on cultured cells in vitro. Infect Immun. 56:582–588 (1988).PubMedGoogle Scholar
  4. 4.
    B. M. Fihn, A. Sjoqvuist, and M. Jodal. Effect of cholera toxin on passive transepithelial transport of 51Cr-ethylenediaminetetraacetic acid and 14C-mannitol in rat jejunum. Acta Physiol. Scand. 171:153–160 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    D. E. Shifflett, D. R. Clayburgh, A. Koutsouris, J. R. Turner, and G. A. Hecht. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab. Invest 85:1308–1324 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Turner, B. K. Rill, S. L. Carlson, D. Carnes, R. Kerner, J. Mrsny, and J. L. Madara. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol. 273:C1378–C1385 (1997).PubMedGoogle Scholar
  7. 7.
    F. Wang, W. V. Graham, Y. Wang, E. D. Witkowski, B. T. Schwarz, and J. R. Turner. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166:409–419 (2005).PubMedGoogle Scholar
  8. 8.
    J. R. Turner. Molecular basis of epithelial barrier regulation. Am. J. Pathol. 169:1901–1909 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    J. J. Berglund, M. Riegler, Y. Zolotaresvsky, E. Wenzl, and J. R. Turner. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am. J. Physiol. 281:G1487–G1493 (2001).Google Scholar
  10. 10.
    L. Shen, E. D. Black, E. D. Witkowski, W. I. Lencer, V. Guerriero, E. E. Schneeberger, and J. R. Turner. Myosin light chain phosphorylation regulates barrier function by remodelling tight junction structure. J. Cell Sci. 119:2095–2104 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Bain, H. MacLauchlan, M. Elliott, and P. Cohen. The specificities of protein kinase inhibitors: an update. Biochem. J. 371:199–204 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Zolotarevsky, G. Hecht, A. Koutsouris, D. E. Gonzalez, C. Quan, J. Tom, R. J. Mrsny, and J. R. Turner. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123:163–172 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    S.-E. Owens, W. V. Graham, D. Siccardi, J. R. Turner, and R. J. Mrsny. A strategy to identify stable membrane permeant peptide inhibitors of myosin light chain kinase. Pharm. Res. 22:703–709 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    T. J. Lucas, S. Mirzoeva, U. Slomczynska, and D. M. Watterson. Identification of novel classes of protein kinase inhibitors using combinatorial peptide chemistry based on functional genomics knowledge. J. Med. Chem. 42:910–919.Google Scholar
  15. 15.
    D. R. Clayburgh, T. A. Barrett, Y. Tang, J. B. Meddings, J. J. Van Eldik, D. M. Watterson, L. L. Clarke, R. J. Mrsny, and J. R. Turner. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest 115:2702–2715 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    D. J. Brayden, E. Creed, E. Meehan, and K. E. O’Malley. Passive transepithelial diltiazem absorption across intestinal tissue leading to tight junction openings. J. Control. Rel. 38:193–203 (1996).CrossRefGoogle Scholar
  17. 17.
    A. C. Chao, J. V. Nguyen, M. Broughall, A. Griffin, J. Fix, and P. E. Daddona. In vitro and in vivo evaluation of effects of sodium caprate on enteral peptide absorption and on mucosal morphology. Int. J. Pharm. 191:15–24 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Y. Ma, N. T. Hoa, D. D. Tran, V. Bui, A. Pedram, S. Mills, and M. Merryfield. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. Am. J. Physiol. 279:G875–G885 (2000).Google Scholar
  19. 19.
    T. W. Leonard, J. Lynch, M. J. McKenna, and D. J. Brayden. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET. Expert Opin. Drug Deliv. 3:685–692 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Tomita, M. Hayashi, and S. Awazu. Absorption-enhancing mechanism of sodium caprate and decanoyl carnitine in Caco-2 cells. J. Pharmacol. Exp. Ther. 272:739–743 (1995).PubMedGoogle Scholar
  21. 21.
    F. R. Byrne, and J. L. Viney. Mouse models of inflammatory bowel disease. Curr. Opin. Drug Disc. Develop 9:207–217 (2006).Google Scholar
  22. 22.
    A. Venkatraman, B. S. Ramakrishna, A. B. Pulimood, S. Patra, and S. Murthy. Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate. Scand. J. Gastroenterol. 35(no. 10); 1053–1059 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    A. W. Cuthbert, and H. S. Margolius. Kinins stimulate net chloride secretion by the rat colon. Br. J. Pharmacol. 75:587–598 (1982).PubMedGoogle Scholar
  24. 24.
    N. P. Hyland, and H. M. Cox. The regulation of veratridine-stimulated electrogenic ion transport in mouse colon by neuropeptide Y (NPY), Y1 and Y2 receptors. Br. J. Pharmacol. 146:712–722 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Moriarty, J. Goldhill, N. Selve, D. P. O’Donoghue, and A. W. Baird. Human colonic anti-secretory activity of the potent NK(1) antagonist, SR140333: assessment of potential anti-diarrhoeal activity in food allergy and inflammatory bowel disease. Br. J. Pharmacol. 133:1346–5134 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Soni, A. W. Baird, L. M. O’Brien, M. McElroy, J. J. Callanan, H. F. Bassett, D. Campion, and D. J. Brayden. Rat, ovine and bovine Peyer’s patches mounted in horizontal diffusion chambers display sampling function. J. Control. Release 115:68–77 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Lindmark, T. Nikkila, and P. Artursson. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J. Pharm. Exp. Ther. 275:958–964 (1995).Google Scholar
  29. 29.
    T. Lindmark, Y. Kimura, and P. Artursson. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther. 284:362–369 (1998).PubMedGoogle Scholar
  30. 30.
    E. K. Anderberg, T. Lindmark, and P. Artursson. Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res. 10:857–864 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Ikebe. Mode of inhibition of smooth muscle myosin light chain kinase by synthetic peptide analogs of the regulatory site. Biochem. Biophys. Res. Commun. 168:714–720 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    H. L. Cameron, and M. H. Perdue. Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J. Pharmacol. Exp. Ther. 314:214–220 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    B. Hameed, D. M. Smith, J. J. Verrechio, J. D. Schmidt, L. E. Gillooley, M. C. Valenzano, S. A. Lewis, and J. M. Mullin. Indocyanine green alters transepithelial electrical parameters of the distal colon. Dig Dis. Sci. 49:1381–1386 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Schicho, D. Krueger, F. Zeller, C. W. Von Weyhern, T. Frieling, H. Kimura, I. Ishii, R. De Giorgio, B. Campi, and M. Schemann. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131:1542–1552 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    N. G. Schipper, K. M. Varum, and P. Artursson. Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm. Res. 13:1686–1692 (1996).PubMedCrossRefGoogle Scholar
  36. 36.
    F. Obermeier, G. Kojouharoff, W. Hans, J. Scholmerich, V. Gross, and W. Falk. Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clin. Exp. Immunol. 116:238–245 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    J. L. Madara, D. Barenberg, and S. Carlson. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol. 102:2125–2136 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    D. R. Stevenson, and D. A. Begg. Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J. Cell Sci. 107:367–375 (1994).PubMedGoogle Scholar
  39. 39.
    M. Schliwa. Action of cytochalasin D on cytoskeletal networks. J. Cell Biol. 92:79–91 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Wallon, Y. Braaf, M. Wolving, G. Olaison, and J. D. Soderholm. Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand. J. Gastroenterol. 40:586–595 (2005).PubMedCrossRefGoogle Scholar
  41. 41.
    J. D. Soderholm, G. Olaison, K. H. Peterson, L. E. Franzen, T. Lindmark, M. Wiren, C. Tagesson, and R. Sjodahl. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut 50:307–313 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Lindmark, Y. Kimura, and P. Artursson. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther. 284:362–369 (1998).PubMedGoogle Scholar
  43. 43.
    S. Wirtz, and M. F. Neurath. Mouse models of inflammatory bowel disease. Adv. Drug Del. Rev. 50:1073–1083 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Linda M. Feighery
    • 1
  • Sean W. Cochrane
    • 1
  • Teresa Quinn
    • 1
  • Alan W. Baird
    • 1
  • Daniel O’Toole
    • 1
  • Sian-Eleri Owens
    • 3
  • Diarmuid O’Donoghue
    • 2
  • Randall J. Mrsny
    • 3
  • David J. Brayden
    • 1
  1. 1.School of Agriculture, Food Science and Veterinary MedicineUniversity College DublinDublin 4Ireland
  2. 2.St. Vincent’s University Teaching HospitalDublin 4Ireland
  3. 3.Welsh School of PharmacyCardiff UniversityCardiffUK

Personalised recommendations