Pharmaceutical Research

, Volume 25, Issue 7, pp 1552–1562

Cytotoxicity of Paclitaxel in Biodegradable Self-Assembled Core-Shell Poly(Lactide-Co-Glycolide Ethylene Oxide Fumarate) Nanoparticles

  • Xuezhong He
  • Junyu Ma
  • Angel E. Mercado
  • Weijie Xu
  • Esmaiel Jabbari
Research Paper

Abstract

Purpose

Biodegradable core-shell polymeric nanoparticles (NPs), with a hydrophobic core and hydrophilic shell, are developed for surfactant-free encapsulation and delivery of Paclitaxel to tumor cells.

Methods

Poly (lactide-co-glycolide fumarate) (PLGF) and Poly (lactide-fumarate) (PLAF) were synthesized by condensation polymerization of ultra-low molecular weight poly(l-lactide-co-glycolide) (ULMW PLGA) with fumaryl chloride (FuCl). Similarly, poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromer was synthesized by reacting ultra-low molecular weight poly(l-lactide) (ULMW PLA) and PEG with FuCl. The blend PLGF/PLEOF and PLAF/PLEOF macromers were self-assembled into NPs by dialysis. The NPs were characterized with respect to particle size distribution, morphology, and loading efficiency. The physical state and miscibility of Paclitaxel in NPs were characterized by differential scanning calorimetry. Tumor cell uptake and cytotoxicity of Paclitaxel loaded NPs were measured by incubation with HCT116 human colon carcinoma cells. The distribution of NPs in vivo was assessed with ApcMin/+mouse using infrared imaging.

Results

PLEOF macromer, due to its amphiphilic nature, acted as a surface active agent in the process of self-assembly which produced core-shell NPs with PLGF/PLAF and PLEOF macromers as the core and shell, respectively. The encapsulation efficiency ranged from 70 to 56% and it was independent of the macromer but decreased with increasing concentration of Paclitaxel. Most of the PLGF and PLAF NPs degraded in 15 and 28 days, respectively, which demonstrated that the release was dominated by hydrolytic degradation and erosion of the matrix. As the concentration of Paclitaxel was increased from 0 to 10, and 40 μg/ml, the viability of HCT116 cells incubated with free Paclitaxel decreased from 100 to 65 and 40%, respectively, while those encapsulated in PLGF/PLEOF NPs decreased from 93 to 54 and 28%.

Conclusions

Groups with Paclitaxel loaded NPs had higher cytotoxicity compared to Paclitaxel directly added to the media at the same concentration. NPs acted as reservoirs to protect the drug from epimerization and hydrolysis while providing a sustained dose of Paclitaxel with time. Infrared image of the ApcMin/+ mouse injected with NPs showed significantly higher concentration of NPs in the intestinal tissue.

Key words

biodegradable nanoparticle core-shell morphology self-assembly tumor drug delivery 

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuezhong He
    • 1
  • Junyu Ma
    • 1
  • Angel E. Mercado
    • 1
  • Weijie Xu
    • 1
  • Esmaiel Jabbari
    • 1
  1. 1.Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations