Pharmaceutical Research

, Volume 25, Issue 7, pp 1552–1562 | Cite as

Cytotoxicity of Paclitaxel in Biodegradable Self-Assembled Core-Shell Poly(Lactide-Co-Glycolide Ethylene Oxide Fumarate) Nanoparticles

  • Xuezhong He
  • Junyu Ma
  • Angel E. Mercado
  • Weijie Xu
  • Esmaiel Jabbari
Research Paper

Abstract

Purpose

Biodegradable core-shell polymeric nanoparticles (NPs), with a hydrophobic core and hydrophilic shell, are developed for surfactant-free encapsulation and delivery of Paclitaxel to tumor cells.

Methods

Poly (lactide-co-glycolide fumarate) (PLGF) and Poly (lactide-fumarate) (PLAF) were synthesized by condensation polymerization of ultra-low molecular weight poly(l-lactide-co-glycolide) (ULMW PLGA) with fumaryl chloride (FuCl). Similarly, poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromer was synthesized by reacting ultra-low molecular weight poly(l-lactide) (ULMW PLA) and PEG with FuCl. The blend PLGF/PLEOF and PLAF/PLEOF macromers were self-assembled into NPs by dialysis. The NPs were characterized with respect to particle size distribution, morphology, and loading efficiency. The physical state and miscibility of Paclitaxel in NPs were characterized by differential scanning calorimetry. Tumor cell uptake and cytotoxicity of Paclitaxel loaded NPs were measured by incubation with HCT116 human colon carcinoma cells. The distribution of NPs in vivo was assessed with ApcMin/+mouse using infrared imaging.

Results

PLEOF macromer, due to its amphiphilic nature, acted as a surface active agent in the process of self-assembly which produced core-shell NPs with PLGF/PLAF and PLEOF macromers as the core and shell, respectively. The encapsulation efficiency ranged from 70 to 56% and it was independent of the macromer but decreased with increasing concentration of Paclitaxel. Most of the PLGF and PLAF NPs degraded in 15 and 28 days, respectively, which demonstrated that the release was dominated by hydrolytic degradation and erosion of the matrix. As the concentration of Paclitaxel was increased from 0 to 10, and 40 μg/ml, the viability of HCT116 cells incubated with free Paclitaxel decreased from 100 to 65 and 40%, respectively, while those encapsulated in PLGF/PLEOF NPs decreased from 93 to 54 and 28%.

Conclusions

Groups with Paclitaxel loaded NPs had higher cytotoxicity compared to Paclitaxel directly added to the media at the same concentration. NPs acted as reservoirs to protect the drug from epimerization and hydrolysis while providing a sustained dose of Paclitaxel with time. Infrared image of the ApcMin/+ mouse injected with NPs showed significantly higher concentration of NPs in the intestinal tissue.

Key words

biodegradable nanoparticle core-shell morphology self-assembly tumor drug delivery 

Notes

Acknowledgements

This publication was made possible in part by NIH Grant No. P20 RR-016461 from the National Center for Research Resources and by the National Science Foundation/EPSCoR under Grant No. 2001 RII-EPS-0132573. This work was also supported by grants from the AO (Arbeitsgemeinschaft Fur Osteosynthesefragen) Foundation (AORF project 05-J95), and the Aircast Foundation. E. Jabbari thanks Dr. Frank Berger (Center for Colon Cancer Research) at the University of South Carolina for providing the ApcMin/+ mouse. E. Jabbari thanks Kelley Intehar (LI-COR Biosciences) for providing the IRDye 800RS Carboxylate dye and scanning the mice with the Odyssey Infrared Imaging System.

References

  1. 1.
    ACS. Cancer Facts & Figures. American Cancer Society, Atlanta, GA, Website: http://www.cancer.org/downloads/STT/CAFF2007PWSecured.pdf, (2007).
  2. 2.
    W. P. McGuire, E. K. Rowinsky, N. B. Rosenshein, F. C. Grumbine, D. S. Ettinger, D. K. Armstrong, and R. C. Donehower. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med. 111:273 (1989).PubMedGoogle Scholar
  3. 3.
    S. Gagandeep, P. M. Novikoff, M. Ott, and S. Gupta. Paclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell lines. Cancer Res. 136:109 (1999).Google Scholar
  4. 4.
    E. K. Rowinsky, and R. C. Donehower. Paclitaxel (Taxol). N. Engl. J. Med. 332:104 (1995).CrossRefGoogle Scholar
  5. 5.
    G. J. MacEachern-Keith, L. J. Wagner, M. J. Butterfield, and I. Mattina. Paclitaxel stability in solution. Anal. Chem. 69:72 (1997).CrossRefGoogle Scholar
  6. 6.
    A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int. J. Pharm. 235:179 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Gelderblom, J. Verweij, K. Nooter, and A. Sparreboom. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer. 37:1590 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    Q. Zhao, B. Han, Z. Wang, C. Gao, C. Peng, and J. Shen. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. Nanomedicine. 3:63 (2007).PubMedGoogle Scholar
  9. 9.
    M. Schmitt-Sody, S. Strieth, S. Krasnici, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res. 9:2335 (2003).PubMedGoogle Scholar
  10. 10.
    M. Nahar, T. Dutta, S. Murugesan, A. Senthilkumar, A. Asthana, D. Abhay, D. Mishra, V. Rajkumar, M. Tare, S. Saraf, and N. Kumar. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Critical Rev. Therap. Drug Carrier Sys. 23:259 (2006).Google Scholar
  11. 11.
    T. Ooya, J. Lee, and K. Park. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J. Control. Release. 93:121 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    J. W. Xie, and C. H. Wang. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxe. Pharm. Res. 22:2079 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Zeisser-Labouebe, N. Lange, R. Gurny, and F. Delie. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharmaceutics. 326:174 (2006).CrossRefGoogle Scholar
  14. 14.
    C. Fonseca, S. Simoes, and R. Gaspar. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release. 83:273 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Modi, J. J. Prakash, A. J. Domb, and N. Kumar. Exploiting EPR in polymer drug conjugate delivery for tumor targeting. Curr. Pharm. Des. 12:4785 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    A. K. Iyer, G. Khaled, J. Fang, and H. Maeda. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 11:812 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    L. H. Reddy. Drug delivery to tumours: recent strategies. J. Pharm. Pharmacol. 57:1231 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U.S.A. 95:4607 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Unezaki, K. Maruyama, J.-I. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, and S. Tsuchiya. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int. J. Pharm. 144:11 (1996).CrossRefGoogle Scholar
  20. 20.
    O. Gallego, and V. Puntes. Can nanotechnology do to fight cancer? Clin. Transl. Oncol. 8:788 (2006).PubMedCrossRefGoogle Scholar
  21. 21.
    N. Nishiyama, and K. Kataoka. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112:630 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93:151 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Kato, H. Onishi, and Y. Machida. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr. Pharm. Biotechnol. 4:303 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54:631 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    R. M. Owen, C. B. Carlson, J. Xu, P. Mowery, E. Fasella, and L. L. Kiessling. Bifunctional ligands that target cells displaying the αvβ3 integrin. ChemBioChem. 8:68 (2007).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Fernandez-Urrusuno, E. Fattal, J. M. Rodrigues, J. Feger, P. Bedossa, and P. Couvreur. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J. Biomed. Mater. Res. 31:401 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Cegnar, J. Kristl, and J. Kos. Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opin. Biol. Ther. 5:1557 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Kommareddy, S. B. Tiwari, and M. M. Amiji. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol. Cancer Res. Treat. 4:615 (2005).PubMedGoogle Scholar
  29. 29.
    G. Kaul, and M. Amiji. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target. 12:585 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    C.-H. Heldin, K. Rubin, K. Pietras, and A. Ostman. High interstitial pressure- An obstacle in cancer therapy. Nature Rev. 4:806 (2004).CrossRefGoogle Scholar
  31. 31.
    H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3:319 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    S. N. Ettinger, C. C. Poellmann, N. A. Wisniewski, A. A. Gaskin, J. S. Shoemaker, J. M. Poulson, M. W. Dewhirst, and B. Klitzman. Urea as a recovery marker for quantitative assessment of tumor interstitial solutes with microdialysis. Cancer Res. 61:7964 (2001).PubMedGoogle Scholar
  33. 33.
    E. Jababri, and X. He. Release characteristics of novel bioresorbable in-situ crosslinkable self assembled nanoparticles. CRS Abstract. CS:1 (2007).Google Scholar
  34. 34.
    E. Jabbari, and X. He. Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer. J. Mater. Sci. Mater. Med. PMID:17597374 (2007).Google Scholar
  35. 35.
    X. He, and E. Jabbari. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules. 8:780 (2007).PubMedCrossRefGoogle Scholar
  36. 36.
    A. S. Sarvestani, X. He, and E. Jabbari. The Effect of osteonectin-derived peptide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds. Biopolymers. 85:370 (2007).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Jabbari, and X. He. Synthesis and material properties of functionalized lactide oligomers as in situ crosslinkable scaffolds for tissue regeneration. Polym. Prepr. 47:353 (2006).Google Scholar
  38. 38.
    A. S. Sarvestani, X. He, and E. Jabbari. Rheological characterization and modeling of gelation kinetics of injectable in situ crosslinkable poly (lactide-ethylene oxide-fumarate) hydrogels. Biomacromolecules. 8:406 (2007).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Groden, A. Thliveris, W. Samowitz, M. Carlson, L. Gelbert, H. Albertsen, G. Joslyn, J. Stevens, L. Spirio, and M. Robertson. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 66:589 (1991).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Sparreboom, J. van Asperen, U. Mayer, A. H. Schinkel, J. W. Smit, D. K. Meijer, P. Borst, W. J. Nooijen, J. H. Beijnen, and O. van Tellingen. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 94:2031 (1997).PubMedCrossRefGoogle Scholar
  41. 41.
    P. D. Scholes, A. G. Coombes, L. Illum, S. S. Davis, J. F. Watts, C. Ustariz, M. Vert, and M. C. Davies. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J. Control. Release. 59:261 (1999).PubMedCrossRefGoogle Scholar
  42. 42.
    L. Mu, and S. S. Feng. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm. Res. 20:1864 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    H. B. Ravivarapu, H. Lee, and P. P. DeLuca. Enhancing initial release of peptide from poly(d,llactide-co-glycolide) (PLGA) microspheres by addition of a porosigen and increasing drug load. Pharm. Dev. Technol. 5:287 (2000).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Messaritaki, S. J. Black, C. F. van der Walle, and S. P. Rigby. NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres. J. Control. Release. 108:271 (2005).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Siepmann, K. Elkharraz, F. Siepmann, and D. Klose. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules. 6:2312 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 314:198 (2006).PubMedCrossRefGoogle Scholar
  47. 47.
    E. Jabbari, W. Xu, and X. He. Degradation characteristics of novel in-situ crosslinkable poly(lactide-co-glycolide-ethylene oxide-fumarate) copolymer networks. Trans. Soc. Biomaterials. 1:353 (2007).Google Scholar
  48. 48.
    M. O. Oyewumi, R. A. Yokel, M. Jay, T. Coakley, and R. J. Mumper. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release. 95:613 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    M. O. Oyewumi, and R. J. Mumper. Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. Int. J. Pharm. 251:85 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Louis, D. Beck, D. Merkle, and G. Ciraolo. Particle size does not affect the rate of intracellular routing for ligands internalized by non-adsorptive pinocytosis. J. Electron Microsc. 46:337 (1997).Google Scholar
  51. 51.
    B. D. Chithrani, A. A. Ghazani, and W. C. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662 (2006).PubMedCrossRefGoogle Scholar
  52. 52.
    H. L. Wong, R. Bendayan, A. M. Rauth, H. Y. Xue, K. Babakhanian, and X. Y. Wu. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 317:1372 (2006).PubMedCrossRefGoogle Scholar
  53. 53.
    Taxol clinical pharmacology, RxList. http://www.rxlist.com/cgi/generic/paclitaxel_cp.htm.
  54. 54.
    I. Gut, V. Danielova, J. Holubova, P. Soucek, and H. Kluckova. Cytotoxicity of cyclophosphamide, paclitaxel, and docetaxel for tumor cell lines in vitro: effects of concentration, time and cytochrome P450-catalyzed metabolism. Arch. Toxicol. 74:437 (2000).PubMedCrossRefGoogle Scholar
  55. 55.
    C. H. Shu, W. K. Yang, Y. L. Shih, M. L. Kuo, and T. S. Huang. Cell cycle G2/M arrest and activation of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G1 apoptosis. Apoptosis. 2:463 (1997).PubMedCrossRefGoogle Scholar
  56. 56.
    T. H. Wang, H. S. Wang, and Y. K. Soong. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 88:2619 (2000).PubMedCrossRefGoogle Scholar
  57. 57.
    W. P. McGuire. Paclitaxel in cancer treatment. Informa Health Care, Oxon, UK, 1995, p. 7.Google Scholar
  58. 58.
    M. G. Catalano, L. Costantino, N. Fortunati, O. Bosco, M. Pugliese, G. Boccuzzi, L. Berta, and R. Frairia. High energy shock waves activate 5’-aminolevulinic acid and increase permeability to Paclitaxel: antitumor effects of a new combined treatment on anaplastic thyroid cancer cells. Thyroid. 17:91 (2007).PubMedCrossRefGoogle Scholar
  59. 59.
    M. V. Varma, and R. Panchagnula. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur. J. Pharm. Sci. 25:445 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuezhong He
    • 1
  • Junyu Ma
    • 1
  • Angel E. Mercado
    • 1
  • Weijie Xu
    • 1
  • Esmaiel Jabbari
    • 1
  1. 1.Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations