Pharmaceutical Research

, Volume 25, Issue 5, pp 1222–1229 | Cite as

Proangiogenic Potential of a Collagen/Bioactive Glass Substrate

Research Paper



Previous attempts to stimulate angiogenesis have focused on the delivery of growth factors and cytokines, genes encoding for specific angiogenic inductive proteins or transcription factors, or participating cells. While high concentrations of bioactive glasses have exhibited osteogenic potential, recent studies have demonstrated that low concentrations of particular bioactive glasses are angiogenic. We hypothesized that a well known bioactive glass (Bioglass® 45S5) possesses proangiogenic potential over a limited range of concentrations.

Materials and Methods

Varying amounts of Bioglass were loaded into absorbable collagen sponges. The proangiogenic potential of Bioglass was determined by examining the capacity of the soluble products to induce endothelial cell proliferation, tubule formation in a co-culture, and upregulate vascular endothelial growth factor (VEGF) production.


We determined a range of Bioglass concentrations which exhibit proangiogenic potential. Furthermore, we demonstrated that the proangiogenic capacity of this material is related to the soluble dissolution products of Bioglass and the subsequent production of cell-secreted angiogenic factors by stimulated cells.


These studies suggest that this bioactive glass possesses a robust proangiogenic potential, and this strategy may provide an alternative to recombinant inductive growth factors.

Key words

angiogenesis bioactive glass endothelial cell osteogenesis VEGF 


  1. 1.
    P. Carmeliet. Manipulating angiogenesis in medicine. J. Intern. Med. 255:538–561 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Nomi, A. Atala, P. D. Coppi, and S. Soker. Principals of neovascularization for tissue engineering. Mol. Aspects. Med. 23:463–483 (2002).PubMedGoogle Scholar
  3. 3.
    L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5:117–141 (1971).CrossRefGoogle Scholar
  4. 4.
    L. L. Hench, I. D. Xynos, and J. M. Polak. Bioactive glasses for in situ tissue regeneration. J. Biomater. Sci. Polym. Ed. 15:543–562 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    E. J. Schepers, and P. Ducheyne. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1–24 month experiment with several materials and particle sizes and size ranges. J. Oral. Rehabil. 24:171–181 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    T. B. Lovelace, J. T. Mellonig, R. M. Meffert, A. A. Jones, P. V. Nummikoski, and D. L. Cochran. Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. J. Periodontol. 69:1027–1035 (1998).PubMedGoogle Scholar
  7. 7.
    R. Mengel, D. Schreiber, and L. Flores-de-Jacoby. Bioabsorbable membrane and bioactive glass in the treatment of intrabony defects in patients with generalized aggressive periodontitis: results of a 5-year clinical and radiological study. J. Periodontol. 77:1781–1787 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Marcolongo, P. Ducheyne, J. Garino, and E. Schepers. Bioactive glass fiber/polymeric composites bond to bone tissue. J. Biomed. Mater. Res. 39:161–170 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier, and R. Jerjme. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 23:3871–3878 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Yao, S. Radina, P. S. Leboy, and P. Ducheyne. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials 26:1935–1943 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    C. R. Perry. Bone repair techniques, bone graft, and bone graft substitutes. Clin. Orthop. Relat. Res. 360:71–86 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    J. K. Leach, and D. J. Mooney. Bone engineering by controlled delivery of osteoinductive molecules and cells. Expert. Opin. Biol. Ther. 4:1015–1027 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, and J. M. Polak. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 276:461–465 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, and J. M. Polak. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55:151–157 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Bosetti, and M. Cannas. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 26:3873–3879 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Hattar, A. Asselin, D. Greenspan, M. Oboeuf, A. Berdal, and J. M. Sautier. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials 26:839–848 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Bergeron, M. E. Marquis, I. Chretien, and N. Faucheux. Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J. Mater. Sci. Mater. Med. 18:255–263 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Keshaw, A. Forbes, and R. M. Day. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26:4171–4179 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    J. K. Leach, D. Kaigler, Z. Wang, P. H. Krebsbach, and D. J. Mooney. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27:3249–3255 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    R. M. Day. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11:768–777 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    W. H. Zhu, and R. F. Nicosia. The thin prep rat aortic ring assay: A modified method for the characterization of angiogenesis in whole mounts. Angiogenesis 5:81–86 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Donovan, N. J. Brown, E. T. Bishop, and C. E. Lewis. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Ivanovski, H. Li, T. Daley, and P. M. Bartold. An immunohistochemical study of matrix molecules associated with barrier membrane-mediated periodontal wound healing. J. Periodontal. Res. 35:115–126 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    A. B. Ennett, D. Kaigler, and D. J. Mooney. Temporally regulated delivery of VEGF in vitro and in vivo. J. Biomed. Mater. Res. Part A 79A:176–184 (2006).CrossRefGoogle Scholar
  25. 25.
    R. R. Chen, and D. J. Mooney. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20:1103–1112 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    S. R. Peyton, and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 204:198–209 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    R. K. Willits, and S. L. Skornia. Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15:1521–1531 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Yamamura, R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 60:24–34 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    S. X. Hsiong, P. Carampin, H. J. Kong, K. Y. Lee, and D. J. Mooney. Differentiation stage alters matrix control of stem cells. J. Biomed. Mater. Res. A (in press) (2007). DOI 10.1002/jbm.a.31521
  31. 31.
    A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    C. B. Khatiwala, S. R. Peyton, M. Metzke, and A. J. Putnam. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J. Cell Physiol. 211:661–672 (2007).PubMedCrossRefGoogle Scholar
  33. 33.
    C. B. Khatiwala, S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290:C1640–1650 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Carmeliet. Angiogenesis in health and disease. Nat. Med. 9:653–660 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    C. R. Ozawa, A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald, and H. M. Blau. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 113:516–527 (2004).PubMedGoogle Scholar
  37. 37.
    W. Helen, C. L. R. Merry, J. J. Blaker, and J. E. Gough. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass(R) composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production. Biomaterials 28:2010–2020 (2007).PubMedCrossRefGoogle Scholar
  38. 38.
    B. R. McAuslan, and W. Reilly. Endothelial cell phagokinesis in response to specific metal ions. Exp. Cell Res. 130:147–157 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    K. S. Raju, G. Alessandri, M. Ziche, and P. M. Gullino. Ceruloplasmin, copper ions, and angiogenesis. J. Natl. Cancer Inst. 69:1183–1188 (1982).PubMedGoogle Scholar
  40. 40.
    C. K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E. C. Ellison, T. K. Hunt, and S. Roy. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 282:H1821–1827 (2002).PubMedGoogle Scholar
  41. 41.
    M. Frangoulis, P. Georgiou, C. Chrisostomidis, D. Perrea, I. Dontas, N. Kavantzas, A. Kostakis, and O. Papadopoulos. Rat epigastric flap survival and VEGF expression after local copper application. Plast. Reconstr. Surg. 119:837–843 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations