Pharmaceutical Research

, 25:1193

A Tertiary Amino-Containing Polymethacrylate Polymer Protects Mucus-Covered Intestinal Epithelial Monolayers Against Pathogenic Challenge

  • Simon Keely
  • Lee-Anne B. Rawlinson
  • David M. Haddleton
  • David J. Brayden
Research Paper

Abstract

Purpose

We examined the cytoprotective influences of the mucoadhesive polymer, poly(DMAEMA), on human mucus-producing intestinal epithelial monolayers against two bacterial exotoxins and S. typhimurium. Direct anti-bacterial effects were also assessed against S. typhimurium.

Methods

In the presence and absence of mucus, untreated or poly(DMAEMA)-exposed monolayers were challenged with S. typhimurium or supernatants containing either cholera (CTx) or C. difficile toxins. Assays included LDH, cytokine secretion, cyclic AMP (cAMP) and microscopy to visualise bacterial adherence by monolayers. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of poly(DMAEMA) against S. typhimurium were established, along with a time–kill study.

Results

CTx and C. difficile toxin induced LDH release from E12 monolayers. CTx also elevated intracellular epithelial cAMP, while S. typhimurium induced basolateral IL-8 secretion. Pre-treatment of E12 monolayers with poly(DMAEMA) reduced these effects, but only in the presence of mucus. The polymer co-localised with S. typhimurium in mucus and reduced bacteria–epithelia association. Poly(DMAEMA) was directly bactericidal against S. typhimurium at 1 mg/ml within 30 min.

Conclusions

Poly(DMAEMA) may have potential as a non-absorbed polymer therapeutic against infection. These effects were mediated by a combination of physical interaction with mucus and by direct bacterial killing.

Key words

anti-bacterial polymers bacterial resistance HT29 monolayers living radical polymerisation poly(2-(dimethylamino-ethyl) methacrylate 

Abbreviations

LDH

lactate dehydrogenase

MBC

minimum bactericidal concentration

MIC

minimum inhibitory concentration

poly(DMAEMA)

poly(2-(dimethylamino-ethyl) methacrylate

References

  1. 1.
    A. Vindel, P. Trincado, E. Gomez, R. Cabrera, T. Boquete, C. Sola, S. Valdezate, and J. A. Saez-Nieto. Prevalence and evolution of methicillin-resistant Staphylococcus aureus in Spanish hospitals between 1996 and 2002. J. Clin. Microbiol. 44:266–270 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Weidenmaier, S. A. Kristian, and A. Peschel. Bacterial resistance to antimicrobial host defenses—an emerging target for novel anti-infective strategies? Curr. Drug Targets 4:643–649 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    P. J. Sansonetti. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4:953–964 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Hecht. Innate mechanisms of epithelial host defense: spotlight on intestine. Am. J. Physiol. 277:C351–C358 (1999).PubMedGoogle Scholar
  5. 5.
    A. P. Corfield, D. Carroll, N. Myerscough, and C. S. Probert. Mucins in the gastrointestinal tract in health and disease. Front. Biosci. 6:D1321–D1357 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    J. M. Otte, K. Kiehne, and K. H. Herzig. Antimicrobial peptides in innate immunity of the human intestine. J. Gastroenterol. 38:717–726 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    M. G. Scott, E. Dullaghan, N. Mookherjee, N. Glavas, M. Waldbrook, A. Thompson, A. Wang, K. Lee, S. Doria, P. Hamill, J. J. Yu, Y. Li, O. Donini, M. M. Guarna, B. B. Finlay, J. R. North, and R. E. Hancock. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25:465–472 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Swidsinski, B. C. Sydora, Y. Doerffel, V. Loening-Baucke, M. Vaneechoutte, M. Lupicki, J. Scholze, H. Lochs, and L. A. Dieleman. Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13:963–970 (2007).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Zhang, and T. J. Falla. Antimicrobial peptides: therapeutic potential. Expert Opin. Pharmacother. 7:653–663 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    D. M. Haddleton, M. C. Crossman, B. H. Ana, D. J. Duncalf, A. M. Heming, D. Kukulj, and A. J. Shooter. Atom transfer polymerization of methyl methacrylate mediated by alkylpyridylmethanimine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution. Macromolecules 32:2110–2119 (1999).CrossRefGoogle Scholar
  11. 11.
    C. Z. Chen, and S. L. Cooper. Interactions between dendrimer biocides and bacterial membranes. Biomaterial 23:3359–3368 (2002).CrossRefGoogle Scholar
  12. 12.
    K. Kuroda, and W. F. DeGrado. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 127:4128–4129 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    G. N. Tew, D. Liu, B. Chen, R. J. Doerksen, J. Kaplan, P. J. Carroll, M. L. Klein, and W. F. DeGrado. De novo design of biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. U. S. A. 99:5110–5114 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    O. Felt, A. Carrel, P. Baehni, P. Buri, and R. Gurny. Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. J. Ocul. Pharmacol. Ther. 16:261–270 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Wu, O. Zaborina, A. Zaborin, E. B. Chang, M. Musch, C. Holbrook, J. Shapiro, J. R. Turner, G. Wu, K. Y. Lee, and J. C. Alverdy. High-molecular-weight polyethylene glycol prevents lethal sepsis due to intestinal Pseudomonas aeruginosa. Gastroenterology 126:488–498 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Werthen, M. Davoudi, A. Sonesson, D. P. Nitsche, M. Morgelin, K. Blom, and A. Schmidtchen. Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. J. Antimicrob. Chemother. 54:772–779 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    A. J. Limer, A. K. Rullay, V. S. Miguel, C. Peinado, S. Keely, E. Fitzpatrick, S. D. Carrington, D. Brayden, and D.M. Haddleton. Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. React. Funct. Polym. 66:51–64 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Keely, A. Rullay, C. Wilson, A. Carmichael, S. Carrington, A. Corfield, D. M. Haddleton, and D. J. Brayden. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharm. Res. 22:38–49 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    M. W. Chapman, and W. K. Hadley. The effect of polymethylmethacrylate and antibiotic combinations on bacterial viability. An in vitro and preliminary in vivo study. J. Bone Joint Surg. Am. 58:76–81 (1976).PubMedGoogle Scholar
  20. 20.
    S. B. Lee, R. R. Koepsel, S. W. Morley, K. Matyjaszewski, Y. J. Sun, and A. J. Russell. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    A. B. Lowe, M. Vamvakaki, M. A. Wassall, L. Wong, N. C. Billingham, S. P. Armes, and A. W. Lloyd. Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. J. Biomed. Mater. Res 52:88–94 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    I. Behrens, P. Stenberg, P. Artursson, and T. Kissel. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm. Res. 18:1138–1145 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Ma, J. R. Thiagarajah, H. Yang, N. D. Sonawane, C. Folli, L. J. Galietta, and A. S. Verkman. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Invest. 110:1651–1658 (2002).PubMedGoogle Scholar
  24. 24.
    J. X. Zhu, G. H. Zhang, N. Yang, D. K. Rowlands, H. Y. Wong, L. L. Tsang, Y. W. Chung, and H. C. Chan. Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line. Eur. J. Pharmacol. 510:187–195 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    K. T. Giannasca, P. J. Giannasca, and M. R. Neutra. Adherence of Salmonella typhimurium to Caco-2 cells: identification of a glycoconjugate receptor. Infect. Immun. 64:135–145 (1996).PubMedGoogle Scholar
  26. 26.
    Clinical and Laboratory Standards Institute. Methods for dilutionantimicrobial susceptibility tests for bacteria that grow aerobically;Approved Standard—Seventh Edition. CLSI document M7-A7. CLSI, Wayne, PA, USA. (2006).Google Scholar
  27. 27.
    National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents; Approved Guideline. NCCLS document M26-A. NCCLS, Wayne, PA, USA. (1999).Google Scholar
  28. 28.
    G. L. French. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58:1107–1117 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Y. Shin, S.H. Lee, S. T. Yang, E. J. Park, D. G. Lee, M. K. Lee, S. H. Eom, W. K. Song, Y. Kim, K. S. Hahm, and J. I. Kim. Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. J. Pept. Res. 58:504–514 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Pothoulakis, and J. T. Lamont. Microbes and microbial toxins: paradigms for microbial–mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G178–G183 (2001).PubMedGoogle Scholar
  31. 31.
    N. Jordan, J. Newton, J. Pearson, and A. Allen. A novel method for the visualization of the in situ mucus layer in rat and man. Clin. Sci. (Lond) 95:97–106 (1998).CrossRefGoogle Scholar
  32. 32.
    I. Matthes, F. Nimmerfall, J. Vonderscher, and H. Sucker. Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie 47:787–791 (1992).PubMedGoogle Scholar
  33. 33.
    B. D. Raynal, T. E. Hardingham, J. K. Sheehan, and D. J. Thornton. Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J. Biol. Chem. 278:28703–28710 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    W. Braunlin, Q. Xu, P. Hook, R. Fitzpatrick, J. D. Klinger, R. Burrier, and C. B. Kurtz. Toxin binding of tolevamer, a polyanionic drug that protects against antibiotic-associated diarrhea. Biophys. J. 87:534–539 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    R. H. Barker Jr., R. Dagher, D. M. Davidson, and J. K. Marquis. Review article: tolevamer, a novel toxin-binding polymer: overview of preclinical pharmacology and physicochemical properties. Aliment. Pharmacol. Ther. 24:1525–1534 (2006).PubMedCrossRefGoogle Scholar
  36. 36.
    N. M. Sullivan, S. Pellett, and T. D. Wilkins. Purification and characterization of toxins A and B of Clostridium difficile. Infect. Immun. 35:1032–1040 (1982).PubMedGoogle Scholar
  37. 37.
    M. W. Bitensky, M. A. Wheeler, H. Mehta, and N. Miki. Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments. Proc. Natl. Acad. Sci. U. S. A. 72:2572–2576 (1975).PubMedCrossRefGoogle Scholar
  38. 38.
    J. A. Adachi, and H. L. DuPont. Rifaximin: a novel nonabsorbed rifamycin for gastrointestinal disorders. Clin. Infect. Dis. 42:541–547 (2006).PubMedCrossRefGoogle Scholar
  39. 39.
    A. T. Gewirtz, T. A. Navas, S. Lyons, P. J. Godowski, and J. L. Madara. Cutting edge: Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:1882–1885 (2001).PubMedGoogle Scholar
  40. 40.
    Y. Yu, H. Zeng, S. Lyons, A. Carlson, D. Merlin, A. S. Neish, and A. T. Gewirtz. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via post-transcriptional mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G282–G290 (2003).PubMedGoogle Scholar
  41. 41.
    A. Haque, F. Bowe, R. J. Fitzhenry, G. Frankel, M. Thomson, R. Heuschkel, S. Murch, M. P. Stevens, T. S. Wallis, A. D. Phillips, and G. Dougan. Early interactions of Salmonella enterica serovar typhimurium with human small intestinal epithelial explants. Gut 53:1424–1430 (2004).PubMedCrossRefGoogle Scholar
  42. 42.
    K. Sakamoto, Y. Mori, H. Takagi, H. Iwata, T. Yamada, N. Futamura, T. Sago, T. Ezaki, Y. Kawamura, and H. Hirose. Translocation of Salmonella typhimurium in rats on total parenteral nutrition correlates with changes in intestinal morphology and mucus gel. Nutrition 20:372–376 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    M.A. Jepson, B. Kenny, and A. D. Leard. Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell. Microbiol. 3:417–426 (2001).PubMedCrossRefGoogle Scholar
  44. 44.
    I. Behrens, P. Stenberg, P. Artursson, and T. Kissel. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm. Res. 18:1138–1145 (2001).PubMedCrossRefGoogle Scholar
  45. 45.
    I. M. Helander, E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol. 71:235–244 (2001).PubMedCrossRefGoogle Scholar
  46. 46.
    H. Liu, Y. Du, X. Wang, and L. Sun. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 95:147–155 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    D. A. Lemberg, C. Y. Ooi, and A. S. Day. Probiotics in paediatric gastrointestinal diseases. J. Paediatr. Child Health 43:331–336 (2007).PubMedCrossRefGoogle Scholar
  48. 48.
    S. M. Ryan, L. Tao, D. M. Haddleton, and D. J. Brayden. Oral polymeric conjugate system for salmon calcitonin: cytotoxicity studies. Proc. Intern. Symp. Control. Rel. Bioact. Mater. 33:A870 (2006).Google Scholar
  49. 49.
    G. Batoni, G. Maisetta, S. Esin, and M. Campa. Human beta-defensin-3: a promising antimicrobial peptide. Mini Rev. Med. Chem. 6:1063–1073 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Simon Keely
    • 1
  • Lee-Anne B. Rawlinson
    • 1
  • David M. Haddleton
    • 2
  • David J. Brayden
    • 1
  1. 1.School of Agriculture, Food Science and Veterinary Medicine and UCD Conway InstituteUniversity College DublinDublin 4Ireland
  2. 2.Department of ChemistryUniversity of WarwickCoventryUK

Personalised recommendations