Pharmaceutical Research

, Volume 25, Issue 5, pp 1212–1221

Composite Fibrin Scaffolds Increase Mechanical Strength and Preserve Contractility of Tissue Engineered Blood Vessels

Reseach Paper

Abstract

Objectives

We recently demonstrated that fibrin-based tissue engineered blood vessels (TEV) exhibited vascular reactivity, matrix remodeling and sufficient strength for implantation into the veins of an ovine animal model, where they remained patent for 15 weeks. Here we present an approach to improve the mechanical properties of fibrin-based TEV and examine the relationship between mechanical strength and smooth muscle cell (SMC) function.

Materials and Methods

To this end, we prepared TEV that were composed of two layers: a cellular layer containing SMC embedded in fibrin hydrogel to provide contractility and matrix remodeling; and a second cell-free fibrin layer composed of high concentration fibrinogen to provide mechanical strength.

Results

The ultimate tensile force of double-layered TEV increased with FBG concentration in the cell-free layer in a dose-dependent manner. Double-layered TEV exhibited burst pressure that was ten-fold higher than single-layered tissues but vascular reactivity remained high even though the cells were constricting an additional tissue layer.

Conclusion

These results showed that mechanical strength results largely from the biomaterial but contractility requires active cellular machinery. Consequently, they may suggest novel approaches for engineering biomaterials that satisfy the requirement for high mechanical strength while preserving SMC function.

Key words

cardiovascular tissue engineering composite materials contractility fibrin smooth muscle 

References

  1. 1.
    M. Gaudino, C. Cellini, C. Pragliola, C. Trani, F. Burzotta, G. Schiavoni, G. Nasso, and G. Possati. Arterial versus venous bypass grafts in patients with in-stent restenosis. Circulation 112:I265–269 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    J. K. Drury, T. R. Ashton, J. D. Cunningham, R. Maini, and J. G. Pollock. Experimental and clinical experience with a gelatin impregnated Dacron prosthesis. Ann. Chir. Vasc 1:542–547 (1987).CrossRefGoogle Scholar
  3. 3.
    M. Pasic, W. Muller-Glauser, B. Odermatt, M. Lachat, B. Seifert, and M. Turina. Seeding with omental cells prevents late neointimal hyperplasia in small-diameter Dacron grafts. Circulation 92:2605–2616 (1995).PubMedGoogle Scholar
  4. 4.
    M. Deutsch, J. Meinhart, T. Fischlein, P. Preiss, and P. Zilla. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855 (1999).PubMedGoogle Scholar
  5. 5.
    T. Huynh, G. Abraham, J. Murray, K. Brockbank, P. O. Hagen, and S. Sullivan. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat. Biotechnol 17:1083–1086 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Bader, G. Steinhoff, K. Strobl, T. Schilling, G. Brandes, H. Mertsching, D. Tsikas, J. Froelich, and A. Haverich. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14 (2000).PubMedGoogle Scholar
  7. 7.
    S. Kaushal, G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo.[comment]. Nat. Med 7:1035–1040 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    N. L’Heureux, S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. [comment]. FASEB J 12:47–56 (1998).PubMedGoogle Scholar
  9. 9.
    N. L’Heureux, J. C. Stoclet, F. A. Auger, G. J. Lagaud, L. Germain, and R. Andriantsitohaina. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 15:515–524 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    L. E. Niklason, J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    L. E. Niklason, W. Abbott, J. Gao, B. Klagges, K. K. Hirschi, K. Ulubayram, N. Conroy, R. Jones, A. Vasanawala, S. Sanzgiri, and R. Langer. Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg 33:628–638 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    S. P. Higgins, A. K. Solan, and L. E. Niklason. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. J. Biomed. Mater. Res 67A:295–302 (2003).CrossRefGoogle Scholar
  13. 13.
    V. H. Barocas, T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng 120:660–666 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Seliktar, R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng 28:351–362 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Seliktar, R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng 29:923–934 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Seliktar, R. M. Nerem, and Z. S. Galis. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng 9:657–666 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    J. P. Stegemann, and R. M. Nerem. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp. Cell Res 283:146–155 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Thie, W. Schlumberger, R. Semich, J. Rauterberg, and H. Robenek. Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis. Eur. J. Cell Biol 55:295–304 (1991).PubMedGoogle Scholar
  19. 19.
    R. A. Clark, L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J. Cell Sci 108:1251–1261 (1995).PubMedGoogle Scholar
  20. 20.
    T. L. Tuan, A. Song, S. Chang, S. Younai, and M. E. Nimni. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res 223:127–134 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    E. D. Grassl, T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res 66A:550–561 (2003).CrossRefGoogle Scholar
  22. 22.
    J. L. Longand, and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol 22:339–350 (2003).CrossRefGoogle Scholar
  23. 23.
    D. D. Swartz, J. A. Russell, and S. T. Andreadis. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol 288:H1451–H1460 (2005)Epub 2004 Oct 1414.PubMedCrossRefGoogle Scholar
  24. 24.
    B. C. Isenbergand, and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng 31:937–949 (2003).CrossRefGoogle Scholar
  25. 25.
    T. S. Girton, T. R. Oegema, and R. T. Tranquillo. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res 46:87–92 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    T. S. Girton, T. R. Oegema, E. D. Grassl, B. C. Isenberg, and R. T. Tranquillo. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng 122:216–223 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Ishibashiand, and T. Matsuda. Reconstruction of a hybrid vascular graft hierarchically layered with three cell types. Asaio. J 40:M284–290 (1994).Google Scholar
  28. 28.
    T. Matsudaand, and H. Miwa. A hybrid vascular model biomimicking the hierarchic structure of arterial wall: neointimal stability and neoarterial regeneration process under arterial circulation. J. Thorac. Cardiovasc. Surg 110:988–997 (1995).CrossRefGoogle Scholar
  29. 29.
    J. D. Berglund, M. M. Mohseni, R. M. Nerem, and A. Sambanis. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials 24:1241–1254 (2003).PubMedCrossRefGoogle Scholar
  30. 30.
    D. J. Geer, D. D. Swartz, and S. T. Andreadis. In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng 10:1006–1017 (2004).PubMedGoogle Scholar
  31. 31.
    L. Yao, D. D. Swartz, S. F. Gugino, J. A. Russell, and S. T. Andreadis. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng 11:991–1003 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    D. J. Geer, D. D. Swartz, and S. T. Andreadis. Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am. J. Pathol 167:1575–1586 (2005).PubMedGoogle Scholar
  33. 33.
    C. B. Herbert, C. Nagaswami, G. D. Bittner, J. A. Hubbell, and J. W. Weisel. Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. J. Biomed. Mater. Res 40:551–559 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    J. D. Smith, N. Davies, A. I. Willis, B. E. Sumpio, and P. Zilla. Cyclic stretch induces the expression of vascular endothelial growth factor in vascular smooth muscle cells. Endothelium 8:41–48 (2001).PubMedGoogle Scholar
  35. 35.
    W. Li, Q. Chen, I. Mills, and B. E. Sumpio. Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells. J. Cell Physiol 195:202–209 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    Q. Chen, W. Li, Z. Quan, and B. E. Sumpio. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J. Vasc. Surg 37:660–668 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    B. S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol 17:979–983 (1999).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Nikolovski, B. S. Kim, and D. J. Mooney. Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB J 17:455–457 (2003)Epub 2003 Jan 2002.PubMedGoogle Scholar
  39. 39.
    B. S. Kim, J. Nikolovski, J. Bonadio, E. Smiley, and D. J. Mooney. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp. Cell Res 251:318–328 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    T. Shin’oka, Y. Imai, and Y. Ikada. Transplantation of a tissue-engineered pulmonary artery. N. England J. Med 344:532–533 (2001).CrossRefGoogle Scholar
  41. 41.
    M. Watanabe, T. Shin’oka, S. Tohyama, N. Hibino, T. Konuma, G. Matsumura, Y. Kosaka, T. Ishida, Y. Imai, M. Yamakawa, Y. Ikada, and S. Morita. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7:429–439 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    S. H. Lee, B. S. Kim, S. H. Kim, S. W. Choi, S. I. Jeong, I. K. Kwon, S. W. Kang, J. Nikolovski, D. J. Mooney, Y. K. Han, and Y. H. Kim. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J. Biomed. Mater. Res. A 66:29–37 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    S. P. Hoerstrup, A. Kadner, C. Breymann, C. F. Maurus, C. I. Guenter, R. Sodian, J. F. Visjager, G. Zund, and M. I. Turina. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann. Thorac. Surg 74:46–52 (2002)discussion 52.PubMedCrossRefGoogle Scholar
  44. 44.
    M. C. Wake, P. K. Gupta, and A. G. Mikos. Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5:465–473 (1996).PubMedCrossRefGoogle Scholar
  45. 45.
    M. E. Nimni, D. Cheung, B. Strates, M. Kodama, and K. Sheikh. Chemically modified collagen: a natural biomaterial for tissue replacement. J. Biomed. Mater. Res 21:741–771 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    L.H. Olde Damink, P.J. Dijkstra, M.J. van Luyn, P.B. van Wachem, P. Nieuwenhuis, and J. Feijen. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17:765–773 (1996).PubMedCrossRefGoogle Scholar
  47. 47.
    P. B. van Wachem, M. J. van Luyn, L. H. Olde Damink, P. J. Dijkstra, J. Feijen, and P. Nieuwenhuis. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen. J. Biomed. Mater. Res 28:353–363 (1994).PubMedCrossRefGoogle Scholar
  48. 48.
    M. J. van Luyn, P. B. van Wachem, L. O. Damink, P. J. Dijkstra, J. Feijen, and P. Nieuwenhuis. Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. J. Biomed. Mater Res 26:1091–1110 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    H. F. Dvorak, V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab. Invest 57:673–686 (1987).PubMedGoogle Scholar
  50. 50.
    A. Takei, Y. Tashiro, Y. Nakashima, and K. Sueishi. Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel. In Vitro Cell Dev. Biol. Anim 31:467–472 (1995).PubMedCrossRefGoogle Scholar
  51. 51.
    P. Hudlett, A. Neuville, A. Miternique, C. Griffon, D. Weltin, and D. Stephan. Angiogenesis and arteriogenesis are increased in fibrin gel chambers implanted in prehypertensive spontaneously hypertensive rats. J. Hypertens 23:1559–1564 (2005).PubMedCrossRefGoogle Scholar
  52. 52.
    L. Martineauand, and C. J. Doillon. Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 10:269–277 (2007).CrossRefGoogle Scholar
  53. 53.
    J. C. Schense, J. Bloch, P. Aebischer, and J. A. Hubbell. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat. Biotechnol 18:415–419 (2000).PubMedCrossRefGoogle Scholar
  54. 54.
    S. E. Sakiyama-Elbertand, and J. Hubbell. Development of fibrin derivatives for controlled release of heparin- binding growth factors. J. Control Release 65:389–402 (2000).CrossRefGoogle Scholar
  55. 55.
    A. H. Zisch, U. Schenk, J. C. Schense, S. E. Sakiyama-Elbert, and J. A. Hubbell. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Control Release 72:101–113 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    A. H. Zisch, M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17:2260–2262 (2003).PubMedGoogle Scholar
  57. 57.
    S. E. Sakiyama-Elbertand, and J. A. Hubbell. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J. Control Release 69:149–158 (2000).CrossRefGoogle Scholar
  58. 58.
    S. L. Brown, C. H. Lundgren, T. Nordt, and S. Fujii. Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis. Cardiovasc. Res 28:1815–1820 (1994).PubMedGoogle Scholar
  59. 59.
    J. I. Jones, T. Prevette, A. Gockerman, and D. R. Clemmons. Ligand occupancy of the alpha-V-beta3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor. Proc. Natl. Acad. Sci. USA 93:2482–2487 (1996).PubMedCrossRefGoogle Scholar
  60. 60.
    J. J. Rossand, and R. T. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol 22:477–490 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Bioengineering Laboratory, Department of Chemical and Biological EngineeringState University of New York at BuffaloAmherstUSA
  2. 2.Center of Excellence in Bioinformatics and Life SciencesBuffaloUSA

Personalised recommendations