Pharmaceutical Research

, Volume 25, Issue 1, pp 218–226 | Cite as

Pharmacokinetic Modeling of Absorption Behavior of 9-Aminocamptothecin (9-AC) Released from Colon-specific HPMA Copolymer–9-AC Conjugate in Rats

  • Song-Qi Gao
  • Yongen Sun
  • Pavla Kopečková
  • C. Matthew Peterson
  • Jindřich Kopeček
Research Paper



To quantitate and predict colon-specific 9-aminocamptothecin (9-AC) release from the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer–9-AC conjugate and its absorption behavior after oral administration in rats.


Drug distribution in the gastrointestinal (GI) tract and the plasma concentration-time profile of 9-AC released from the HPMA copolymer conjugate were predicted using the degradation, transit, and absorption rate constants in cecum. The fate of 9-AC in cecum and liver was measured by in-situ cecum absorption and liver perfusion.


Following oral administration of the conjugate, 9-AC was released rapidly in cecum. Based on the pharmacokinetic model, up to 60% of the dose was in the cecum at ~6 h, and 7% of the dose still remained there at 24 h. The predicted plasma concentration curve for released 9-AC after an oral dose of 3 mg/kg of 9-AC equivalent increased gradually and reached a peak of 98 nM at 7 h, then started decreasing slowly to 16 nM at 24 h. The bioavailability value was estimated as 0.31 after the first-pass elimination.


A pharmacokinetic model delineated the impact of GI transit, drug absorption rate, and first-pass metabolism on drug disposition following oral administration of HPMA copolymer–9-AC conjugate in rats.

Key words

absorption prediction colon-specific drug delivery HPMA copolymer–9-aminocamptothecin conjugate oral dosing pharmacokinetic modeling 



The research was supported in part by NIH grants GM50839 and CA51578. 9-Aminocamptothecin was kindly provided by National Cancer Institute, Division of Cancer Treatment and Diagnosis.


  1. 1.
    J. J. Champoux. Mechanism of the reaction catalyzed by the DNA untwisting enzyme: attachment of the enzyme to 3’-terminus of the nicked DNA. J. Mol. Biol 118:441–446 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. H. Hsiang, and L. F. Liu. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726 (1988).PubMedGoogle Scholar
  3. 3.
    Y. P. Tsao, A. Russo, G. Nyamuswa, R. Silber, and L. F. Liu. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res 53:5908–5914 (1993).PubMedGoogle Scholar
  4. 4.
    Y. P. Tsao, P. D’Arpa, and L. F. Liu. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52:1823–1829 (1992).PubMedGoogle Scholar
  5. 5.
    C. J. Gerrits, M. J. de Jonge, J. H. Schellens, G. Stoter, and J. Verweij. Topoisomerase I inhibitors: the relevance of prolonged exposure for present clinical development. Brit. J. Cancer 76:952–962 (1997).PubMedGoogle Scholar
  6. 6.
    P. Pantazis, H. R. Hinz, J. T. Mendoza, A. J. Kozielski, L. J. Williams, J. S. Stehlin, and B. C. Giovanella. Complete inhibition of growth followed by death of human malignant melanoma cells in vitro and regression of human melanoma xenografts in immunodeficient mice induced by camptothecins. Cancer Res 52:3980–3987 (1992).PubMedGoogle Scholar
  7. 7.
    P. Pantazis, A. J. Kozielski, J. T. Mendoza, J. A. Early, H. R. Hinz, and B. C. Giovanella. Camptothecin derivatives induce regression of human ovarian carcinomas grown in nude mice and distinguish between non-tumorigenic and tumorigenic cells in vitro. Int. J. Cancer 53:863–871 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    H. L. McLeod, F. Douglas, M. Oates, R. P. Symonds, D. Prakash, A. G. vander Zee, S. B. Kaye, R. Brown, and W. N. Keith. Topoisomerase I and II activity in human breast, cervix, lung and colon cancer. Int. J. Cancer 59:607–611 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    B. C. Giovanella, J. S. Stehlin, M. E. Wall, M. C. Wani, A. W. Nicholas, L. F. Liu, R. Silber, and M. Potmesil. DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    C. H. Takimoto. Why drugs fail: of mice and men revisited. Clin. Cancer Res 7:229–230 (2001).PubMedGoogle Scholar
  11. 11.
    M. N. Kirstein, P. J. Houghton, P. J. Cheshire, L. B. Richmond, A. K. Smith, S. K. Hanna, and C. F. Stewart. Relation between 9-aminocamptothecin systemic exposure and tumor response in human solid tumor xenografts. Clin. Cancer Res 7:358–366 (2001).PubMedGoogle Scholar
  12. 12.
    C. L. Erickson-Miller, R. D. May, J. Tomaszewski, B. Osborn, M. J. Murphy, J. G. Page, and R. E. Parchment. Differential toxicity of camptothecin, topotecan and 9-aminocamptothecin to human, canine, and murine myeloid progenitors (CFU-GM) in vitro. Cancer Chemother. Pharmacol 39:467–472 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    S.-Q. Gao, Z.-R. Lu, B. Petri, P. Kopečková, and J. Kopeček. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Release 110:323–331 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    S.-Q. Gao, Z.-R. Lu, P. Kopečková, and J. Kopeček. Biodistribution and pharmacokinetics of colon-specific HPMA copolymer-9-aminocamptothecin conjugate in mice. J. Control. Release 117:179–185 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Haupt, and A. Rubinstein. The colon as a possible target for orally administered peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst 19:499–551 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Sakuma, Z.-R. Lu, P. Kopečková, and J. Kopeček. Biorecognizable HPMA copolymer-drug conjugates for colon-specific delivery of 9-aminocamptothecin. J. Control. Release 75:365–379 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Kopečková, R. Rathi, S. Takada, B. Říhová, M. M. Berenson, and J. Kopeček. Bioadhesive N-(2-hydroxypropyl)methacrylamide copolymers for colon-specific drug delivery. J. Control. Release 28:211–222 (1994).CrossRefGoogle Scholar
  18. 18.
    K. Kakemi, H. Sezaki, R. Konishi, T. Kimura, and A. Okita. Effect of bile salts on the gastrointestinal absorption of drugs. II. Mechanism of the enhancement of the intestinal absorption of sulfaguanidine by bile salts. Chem. Pharm. Bull 18:1034–1039 (1970).PubMedGoogle Scholar
  19. 19.
    L. S. Schanker, P. A. Shore, B. B. Brodie, and C. A. Hogben. Absorption of drugs from the stomach. I. The rat. J. Pharmacol. Exp. Ther 120:528–539 (1957).PubMedGoogle Scholar
  20. 20.
    S. Mani, L. Iyer, L. Janisch, X. Wang, G. F. Fleming, R. L. Schilsky, and M. J. Ratain. Phase I clinical and pharmacokinetic study of oral 9-aminocamptothecin (NSC-603071). Cancer Chemother. Pharmacol 42:84–87 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Yokoe, N. Iwasaki, S. Haruta, K. Kadono, K. Ogawara, K. Higaki, and T. Kimura. Analysis and prediction of absorption behavior of colon-targeted prodrug in rats by GI-transit-absorption model. J. Control. Release 86:305–313 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Kimura, N. Iwasaki, J. I. Yokoe, S. Haruta, Y. Yokoo, K. I. Ogawara, and K. Hidaki. Analysis and prediction of absorption profile including hepatic first-pass metabolism of N-methyltyramine, a potent stimulant of gastrin release present in beer, after oral ingestion in rats by gastrointestinal-transit-absorption model. Drug Metab. Dispos 28:577–581 (2000).PubMedGoogle Scholar
  23. 23.
    S. Terris, and D. F. Steiner. Retention and degradation of 125I-insulin by perfused livers from diabetic rats. J. Clin. Inv 57:885–896 (1976).CrossRefGoogle Scholar
  24. 24.
    K. Higaki, and M. Nakano. Stereoselective disposition of S-8666, a novel uricosuric antihypertensive diuretic, and its N-monodemethylated metabolite in a perfused rat liver preparation. Effect of protein binding on the kinetics of S-8666. Drug Metabol. Disp 20:350–355 (1992).Google Scholar
  25. 25.
    K. S. Pang, and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm 5:625–653 (1977).CrossRefGoogle Scholar
  26. 26.
    K. S. Pang, and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. J. Pharmacokin. Biopharm 5:655–680 (1977).CrossRefGoogle Scholar
  27. 27.
    K. Cheung, P. E. Hickman, J. M. Potter, N. I. Walker, M. Jericho, R. Haslam, and M. S. Roberts. An optimized model for rat liver perfusion studies. J. Surg. Res 66:81–89 (1966).CrossRefGoogle Scholar
  28. 28.
    J. Fassberg, and V. J. Stella. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm. Sci 81:676–684 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    C. H. Takimoto, R. W. Klecker, W. L. Dahut, L. K. Yee, J. M. Strong, C. J. Allegra, and J. L. Grem. Analysis of the active lactone form of 9-aminocamptothecin in plasma using solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl 655:97–104 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Nagashima, E. Tanaka, S. Inomata, K. Honda, and S. Misawa. A study of the in vitro interaction between lidocaine and premedications using human liver microsomes. J. Clin. Pharm. Ther 30:185–188 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    B. Davies, and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res 10:1093–1095 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Sawamoto, S. Haruta, Y. Kurosaki, K. Higaki, and T. Kimura. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J. Pharm. Pharmacol 49:450–457 (1997).PubMedGoogle Scholar
  33. 33.
    A. Rubinstein. Approaches and opportunities in colon-specific drug delivery. Crit. Rev. Ther. Drug Carrier Syst 12:101–149 (1995).PubMedGoogle Scholar
  34. 34.
    K. Ikesue, P. Kopečková, and J. Kopeček. Degradation of proteins by guinea pig intestinal enzymes. Int. J. Pharm 95:171–179 (1993).CrossRefGoogle Scholar
  35. 35.
    M. Saffran, G. S. Kumar, C. Savariar, J. C. Burnham, F. Williams, and D. C. Neckers. A new approach to the oral administration of insulin and other peptide drugs. Science 233:1081–1084 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    D. R. Friend, S. Phillips, and T. N. Tozer. Colon-specific drug delivery from a glucoside in the guinea pig. Efficacy study. J. Control. Release 15:47–54 (1991).CrossRefGoogle Scholar
  37. 37.
    C. Larsen, E. Harboe, M. Johansen, and H. P. Oleson. Macromolecular prodrugs. XV. Colon-targeted delivery—comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal tract. Pharm. Res 6:995–999 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Minko. Drug targeting to the colon with lectins and neoglycoconjugates. Adv. Drug Delivery Rev 56:491–509 (2004).CrossRefGoogle Scholar
  39. 39.
    J. P. Brown, G. V. McGarraugh, T. M. Parkinson, R. E. Wingard Jr, and A. B. Oderdonk. A polymeric drug for treatment of inflammatory bowel disease. J. Med. Chem 26:1300–1307 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Wróblewski, M. Berenson, P. Kopečková, and J. Kopeček. Biorecognition of HPMA copolymer–lectin conjugates as an indicator of differentiation of cell-surface glycoproteins in development, maturation, and diseases of human and rodent gastrointestinal tract. J. Biomed. Mater. Res 51:329–342 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Wróblewski, P. Kopečková, B. Říhová, and J. Kopeček. Lectin–HPMA copolymer conjugates: potential oral drug carriers for targeting diseased tissues. Macromol. Chem. Phys 199:2601–2608 (1998).CrossRefGoogle Scholar
  42. 42.
    Z.-R. Lu, S. Gao, P. Kopečková, and J. Kopeček. Synthesis of bioadhesive lectin–HPMA copolymer–cyclosporin conjugates. Bioconjugate Chem 11:3–7 (2000).CrossRefGoogle Scholar
  43. 43.
    S. Wróblewski, B. Říhová, P. Rossmann, T. Hudcovicz, Z. Řeháková, P. Kopečková, B. Říhová, and J. Kopeček. The influence of colonic microbiota on HPMA copolymer–lectin conjugates binding in rodent intestine. J. Drug Targeting 9:85–94 (2001).CrossRefGoogle Scholar
  44. 44.
    T. Kimura, and K. Higaki. Gastrointestinal transit and drug absorption. Biol. Pharm. Bull 25:149–164 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Haupt, T. Zioni, I. Gati, J. Kleinstern, and A. Rubinstein. Luminal delivery and dosing consideration to colorectal cancer. Eur. J. Pharm. Sci 28:204–211 (2006).PubMedCrossRefGoogle Scholar
  46. 46.
    G. Chirico, M. Collini, F. Olivini, M. Zamai, E. Frigerio, and V. R. Caiolfa. Aggregation properties of a HPMA-camptothecin copolymer in isotonic solutions. Biophys. Chem 110:281–295 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    E. Gupta, V. Vyas, F. Ahmed, P. Sinko, T. Cook, and E. Rubin. Pharmacokinetics of orally administered camptothecins. Ann. New York Acad. Sci 922:195–204 (2000).CrossRefGoogle Scholar
  48. 48.
    J. R. Gillette. Overview of drug-protein binding. Ann. New York Acad. Sci 226:6–17 (1973).CrossRefGoogle Scholar
  49. 49.
    L. Shargel and A. Yu. Appl. Biopharm. Pharmacokin. McGraw-Hill, pp. 383–393 (1999).Google Scholar
  50. 50.
    J. M. Gallo, P. Vicini, A. Orlansky, S. Li, F. Zhou, J. Ma, S. Pulfer, M. A. Bookman, and P. Guo. Pharmacokinetic model-predicted anticancer drug concentrations in human tumors. Clin. Cancer Res 10:8048–8058 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Song-Qi Gao
    • 1
  • Yongen Sun
    • 2
  • Pavla Kopečková
    • 1
    • 3
  • C. Matthew Peterson
    • 2
  • Jindřich Kopeček
    • 1
    • 3
  1. 1.Department of Pharmaceutics and Pharmaceutical Chemistry/CCCDUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Obstetrics and GynecologyUniversity of UtahSalt Lake CityUSA
  3. 3.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations