Pharmaceutical Research

, Volume 24, Issue 12, pp 2309–2316 | Cite as

Intravenous siRNA of Brain Cancer with Receptor Targeting and Avidin–Biotin Technology

  • Chun-Fang Xia
  • Yufeng Zhang
  • Yun Zhang
  • Ruben J. Boado
  • William M. Pardridge
Research Paper

Abstract

Purpose

The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood–brain barrier in vivo.

Methods

siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin–biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin.

Results

Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 μg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin–streptavidin linker. The intravenous administration of the siRNA caused a 69–81% decrease in luciferase gene expression in the intracranial brain cancer in vivo.

Conclusions

Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin–biotin technology.

Key words

avidin biotin blood–brain barrier monoclonal antibody RNA interference 

References

  1. 1.
    M. T. McManus, P. A. Sharp. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3:737–747 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    P. J. Paddison, A. A. Caudy, E. Bernstein, G. J. Hannon, D. S. Conklin. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16:948–958 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Spagnou, A. D. Miller, M. Keller. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43:13348–13356 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Jahraus, T. E. Tjelle, T. Berg, A. Habermann, B. Storrie, O. Ullrich, et al. In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J. Biol. Chem. 273:30379–30390 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    W. M. Pardridge. shRNA and siRNA delivery to the brain. Adv. Drug Deliv. Rev. 59:141–152 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, W. M. Pardridge. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    N. M. Green. Avidin and streptavidin. Methods Enzymol. 184:51–67 (1990).PubMedGoogle Scholar
  8. 8.
    T. Suzuki, D. Wu, F. Schlachetzki, J. Y. Li, R. J. Boado, W. M. Pardridge. Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J. Nucl. Med. 45:1766–1775 (2004).PubMedGoogle Scholar
  9. 9.
    W. M. Pardridge, Y. S. Kang, J. L. Buciak, J. Yang. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood–brain barrier in vivo in the primate. Pharm. Res. 12:807–816 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    W. M. Pardridge, J. L. Buciak, P. M. Friden. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:66–70 (1991).PubMedGoogle Scholar
  11. 11.
    H. J. Lee, B. Engelhardt, J. Lesley, U. Bickel, W. M. Pardridge. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J. Pharmacol. Exp. Ther. 292:1048–1052 (2000).PubMedGoogle Scholar
  12. 12.
    W. M. Pardridge, R. J. Boado, Y. S. Kang. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood–brain barrier in vivo. Proc. Natl. Acad. Sci. U.S.A. 92:5592–5596 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Wu, J. Yang, W. M. Pardridge. Drug targeting of a peptide radiopharmaceutical through the primate blood–brain barrier In vivo with a monoclonal antibody to the human insulin receptor. J. Clin. Invest. 100:1804–1812 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    R. J. Boado, W. M. Pardridge. Ten nucleotide cis element in the 3-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Brain Res. Mol. Brain Res. 59:109–113 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, R. J. Boado, W. M. Pardridge. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med. 5:1039–1045 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    S. M. Elbashir, J. Harborth, K. Weber, T. Tuschl. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    R. F. Barth. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J. Neurooncol. 36:91–102 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. L. Chiu, T. M. Rana. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10:549–561 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    A. de Fougerolles, M. Manoharan, R. Meyers, H. P. Vornlocher. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol. 392:278–296 (2005).PubMedGoogle Scholar
  20. 20.
    I. Pilz, E. Schwarz, W. Durchschein, A. Licht, M. Sela. Effect of cleaving interchain disulfide bridges on the radius of gyration and maximum length of anti-poly(d-alanyl) antibodies before and after reaction with tetraalanine hapten. Proc. Natl. Acad. Sci. USA. 77:117–121 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Grzelinski, B. Urban-Klein, T. Martens, K. Lamszus, U. Bakowsky, S. Hobel, F. Czubayko, A. Aigner. RNA interference-mediated gene silencing of pleiotrophin though polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17:751–766 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. K. Song, F. Liu, S. Chu, D. Liu. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum. Gene Ther. 8:1585–1594 (1997).PubMedGoogle Scholar
  23. 23.
    K. Miyawaki-Shimizu, D. Predescu, J. Shimizu, M. Broman, S. Predescu, A. B. Malik. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathwayAm. J. Physiol. Lung. Cell. Mol. Physiol. 290:L405–L413 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Kumar, H. Wu, J. L. McBride, K.-E. Jung, M. H. Kim, B. L. Davidson, S. K. Lee, P. Shankar, N. Manjunath. Transvascular delivery of small interfering RNA to the central nervous systemNature. 448:39–43 (2007).PubMedCrossRefGoogle Scholar
  25. 25.
    B. T. Hawkins, R. D. Egleton, T. P. Davis. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am. J. Physiol. Heart Circ. Physiol. 289:H212–H219 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    H. J. Lee, Y. Zhang, C. Zhu, K. Duff, W. M. Pardridge. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical. J. Cereb. Blood Flow Metab. 22:223–231 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Egli, G. Minasov, V. Tereshko, P. S. Pallan, M. Teplova, G. B. Inamati, E. A. Lesnik, S. R. Owens, B. S. Ross, T. P. Prakash, M. Manoharan. Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2-O-ribonucleic acid modifications. Biochemistry 44:9045–9057 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Yoshikawa, W. M. Pardridge. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptorJ. Pharmacol. Exp. Ther. 263:897–903 (1994).Google Scholar
  30. 30.
    M. L. Penichet, Y. S. Kang, W. M. Pardridge, S. L. Morrison, S.U. Shin. An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effective brain targeting: initial applications in anti-HIV antisense drug delivery to the brain. J. Immunol. 163:4421–4426 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chun-Fang Xia
    • 1
  • Yufeng Zhang
    • 2
  • Yun Zhang
    • 1
    • 2
  • Ruben J. Boado
    • 1
    • 2
  • William M. Pardridge
    • 1
  1. 1.Department of MedicineUCLALos AngelesUSA
  2. 2.ArmaGen Technologies, Inc.Santa MonicaUSA

Personalised recommendations