Advertisement

Pharmaceutical Research

, Volume 25, Issue 1, pp 207–217 | Cite as

Formulation of Hydrophilic Non-Aqueous Gel: Drug Stability in Different Solvents and Rheological Behavior of Gel Matrices

  • Keat Theng Chow
  • Lai Wah Chan
  • Paul W. S. Heng
Research Paper

Abstract

Purpose

This study was aimed at formulating a hydrophilic non-aqueous gel for topical delivery of the model moisture-sensitive drug, minocycline hydrochloride (MH).

Methods

Stability study of MH dissolved in water and various hydrophilic non-aqueous solvents was performed over a period of four months in order to select a suitable non-aqueous solvent for MH gel. To improve MH stability, the effect of different cation additives on MH stability in the selected solvent was investigated. Non-aqueous gel matrices were prepared from three different types of hydrophilic polymers in glycerin-propylene glycol mixture with Mg2+ cation additive. Oscillatory shear rheometry was performed on the gel matrices using a cone-and-plate rheometer.

Results

MH stability was affected by the type of solvent employed and the duration of storage. Different cation additives affected the extent of MH stabilization through MH-cation complex formation. Rheological properties of the non-aqueous gel matrices were significantly affected by the type and concentration of polymer, and the vehicle ratios in the formulations.

Conclusions

MH stabilization could be achieved using the selected glycerin-propylene glycol mixture containing MgCl2. Gel matrix formulated using this solvent system and 3%w/w N-vinylacetamide/sodium acrylate copolymer had demonstrated the most favorable rheological properties as a gel for topical application.

Key words

minocycline hydrochloride non-aqueous gel rheology stability viscoelastic 

References

  1. 1.
    S. Yoshioka, Y. Aso, and T. Terao. Effect of water mobility on drug hydrolysis rates in gelatin gels. Pharm. Res. 9(5):607–612 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. L. Loukas, V. Vraka, and G. Gregoriadis. Drugs, in cyclodextrins, in liposomes: A novel approach to the chemical stability of drugs sensitive to hydrolysis. Int. J. Pharm. 162(1–2):137–142 (1998).CrossRefGoogle Scholar
  3. 3.
    V. Goulden, D. Glass, and W. J. Cunliffe. Safety of long-term high-dose minocycline in the treatment of acne. Brit. J. Dermatol. 134:693–695 (1996).Google Scholar
  4. 4.
    Y. Wu, and R. Fassihi. Stability of metronidazole, tetracycline HCl and famotidine alone or in combination. Int. J. Pharm. 290:1–13 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    J. M. Moreno-Cerezo, M. Córdoba-Díaz, D. Córdoba-Díaz, and M. Córdoba-Borrego. A stability study of tetracycline and tetracycline cyclodextrins in tablets using a new HPLC method. J. Pharmaceut. Biomed. 26:417–426 (2001).CrossRefGoogle Scholar
  6. 6.
    L. A. Mitscher. Degradation and structure proofs. In The Chemistry of Tetracycline Antibiotics, Medicinal Research Series, Vol 9. Marcel Dekker, New York, 1978, pp. 122–164.Google Scholar
  7. 7.
    E. G. Remmers, G. M. Sieger, and A. P. Doerschuk. Some observations on the kinetics of the C·4 epimerization of tetracycline. J. Pharm. Sci. 52:752–756 (1963).PubMedCrossRefGoogle Scholar
  8. 8.
    K. G. McEvoy (ed.). Tetracyclines. In AHFS Drug Information. American Society of Health-System Pharmacist, Maryland, 2006, pp. 440–467.Google Scholar
  9. 9.
    T. H. El-Faham. Transdermal delivery of bromhexidine hydrochloride from various formulations through excised hairless mouse skin. S.T.P. Pharma Sci. 4(3):240–244 (1994).Google Scholar
  10. 10.
    T. H. El-Faham, and A. A. Massoud. Assessment of bromhexidine hydrochloride formulations in human dry eye patients. J. Control. Release 32(3):279–283 (1994).CrossRefGoogle Scholar
  11. 11.
    J. S. Hao, L. W. Chan, Z. X. Shen, and P. W. S. Heng. Complexation between PVP and Gantrez polymer and its effect on release and bioadhesive properties of the composite PVP/Gantrez films. Pharm. Dev. Technol. 9(4):379–386 (2004).PubMedCrossRefGoogle Scholar
  12. 12.
    L. W. Chan, K. T. Ong, and P. W. S. Heng. Novel film modifiers to alter the physical properties of composite ethylcellulose films. Pharm. Res. 22(3):476–489 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    B. W. Barry. Dermatological formulations. Percutaneous absorption. Marcel Dekker, New York, 1983.Google Scholar
  14. 14.
    D. S. Jones, A. D. Woolfson, and A. F. Brown. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int. J. Pharm. 151:223–233 (1997).CrossRefGoogle Scholar
  15. 15.
    M. T. Islam, N. Rodríguez-Hornedo, S. Ciotti, and C. Ackermann. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res. 21(7):1192–1199 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    E. Lizaso, M. E. Muñoz, and A. Santamaría. Formation of gels in ethylcellulose solutions. An interpretation from dynamic viscoelastic results. Macromolecules 32:1883–1889 (1999).CrossRefGoogle Scholar
  17. 17.
    P. W. S. Heng, L. W. Chan, and K. T. Chow. Development of novel non-aqueous ethylcellulose gel matrices: rheological and mechanical characterization. Pharm. Res. 22(4):676–684 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    B. W. Barry, and M. C. Meyer. The rheological properties of carbopol gels II. Oscillatory properties of carbopol gels. Int. J. Pharm. 2:27–40 (1979).CrossRefGoogle Scholar
  19. 19.
    J. T. Carstensen. Solution kinetics. In Drug Stability: Principles and Practices. Marcel Dekker, New York, 2000, pp. 25–30.Google Scholar
  20. 20.
    D. A. Hussar, P. J. Niebergall, E. T. Sugita, and J. T. Doluisio. Aspects of epimerization of certain tetracycline derivatives. J. Pharm. Pharmac. 20:539–546 (1968).Google Scholar
  21. 21.
    H. J. C. F. Nelis, and A. P. De Leenheer. Metabolism of minocycline in humans. Drug Metab. Dispos. 10(2):142–146 (1982).PubMedGoogle Scholar
  22. 22.
    M. J. Nilges, W. S. Enochs, and H. M. Swartz. Identification and characterization of a tetracycline semiquinone formed during the oxidation of minocycline. J. Org. Chem. 56:5623–5630 (1991).CrossRefGoogle Scholar
  23. 23.
    F. L. Bamba, and J. Wepiere. Role of appendageal pathway in percutaneous absorption of pyridostigmine bromide in various vehicles. Eur. J. Drug Metab. Pharmacokinet. 18:339–348 (1993).PubMedGoogle Scholar
  24. 24.
    R. Wolf, D. Wolf, B. Tüzün, and Y. Tüzün. Contact dermatitis to cosmetics. Clin. Dermatol. 19:502–515 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Johnson Jr. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate. Int. J. Toxicol. 20(Suppl. 4):13–26 (2001).PubMedGoogle Scholar
  26. 26.
    M. J. Catanzaro, and J. G. Smith Jr. Propylene glycol dermatitis. J. Am. Acad. Dermatol. 24:90–95 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Lodén, A.-C. Andersson, C. Anderson, I.-M. Bergbrant, T. Frödin, H. Öhman, M.-H. Sandström, T. Särnhult, E. Voog, B. Stenberg, E. Pawlik, A. Preisler-Häggqvist,Open image in new window Svensson, and M. Lindberg. A double-blind study comparing the effect of glycerin and urea on dry, eczematous skin in atopic patients. Acta Derm. Venereol. 82:45–47 (2002).Google Scholar
  28. 28.
    J. Q. Del Rosso. The role of the vehicle in combination acne therapy. CUTIS. 76(2):15–18 (2005).PubMedGoogle Scholar
  29. 29.
    Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Glycerin (accessed 3/22/07).
  30. 30.
    J. M. Wessels, W. E. Ford, W. Szymczak, and S. Schneider. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A Spectroscopic Study. J. Phys. Chem. B. 102:9323–9331 (1998).CrossRefGoogle Scholar
  31. 31.
    L. Lambs, and G. Berthon. Metal ion-tetracycline interactions in biological fluids. Part 7. Quantitative investigation of methacycline complexes with Ca(II), Mg(II), Cu(II) and Zn(II) ions and assessment of their biological significance. Inorg. Chim. Acta. 151:33–43 (1988).CrossRefGoogle Scholar
  32. 32.
    M. Novák-Pékli, M. E. Mesbah, G. Pethő. Equilibrium studies on tetracyline-metal ion systems. J. Pharm. Biomed. Anal. 14:1025–1029 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    W. B. De Almeida, H. F. Dos Santos, and M. C. Zerner. A theoretical studies of the interaction of anhydrotetracycline with Al(III). J. Pharm. Sci. 87(9):1101–1108 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Hasegawa, K. Nakashima, T. Eguchi, and M. Ota. US Patent, 1987, US 4701320.Google Scholar
  35. 35.
    M. O. Schmitt, and S. Schneider. Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+. Phys. Chem. Comm. 9:1–14 (2000).Google Scholar
  36. 36.
    Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Ionic_radius (accessed 12/22/06).
  37. 37.
  38. 38.
    T. Ohyama, and J. A. Cowan. Calorimetric studies of metal binding to tetracycline. Role of solvent structure in defining the selectivity of metal ion-drug interactions. Inorg. Chem. 34:3083–3086 (1995).CrossRefGoogle Scholar
  39. 39.
    H. A. Duarte, S. Carvalho, E. B. Paniago, and A. M. Simas. Importance of tautomers in the chemical behaviour of tetracyclines. J. Pharm. Sci. 88(1):111–120 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    S. S. Davis. Viscoelastic properties of pharmaceutical semisolids I: Ointment bases. J. Pharm. Sci. 58(4):412–418 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    M. M. Talukdar, I. Vinckier, P. Moldenaers, and R. Kinget. Rheological characterization of xanthan gum and hydroxypropylmethylcellulose with respect to controlled-release drug delivery. J. Pharm. Sci. 85(5):537–540 (1996).PubMedCrossRefGoogle Scholar
  42. 42.
    D. S. Jones, A. D. Woolfson, J. Djokic, and W. A. Coulter. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm. Res. 13(11):1734–1738 (1996).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Tamburic, and D. Q. M. Craig. A comparison of different in vitro methods for measuring mucoadhesive performance. Eur. J. Pharm. Biopharm. 44:159–167 (1997).CrossRefGoogle Scholar
  44. 44.
    I. G. Needleman, G. P. Martin, and F. C. Smales. Characterisation of bioadhesives for periodontal and oral mucosal drug delivery. J. Clin. Periodontol. 25:74–82 (1998).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Y. Chang, Y. Oh, H. Choi, Y. B. Kim, and C. Kim. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J. Pharm. 241:155–163 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Tamburic, and D. Q. M. Craig. An investigation into the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. J. Control. Release 37:59–68 (1995).CrossRefGoogle Scholar
  47. 47.
    R. K. Gupta. Dynamic mechanical properties. In Polymer and Composite Rheology. Marcel Dekker, New York, 2000, p. 133.Google Scholar
  48. 48.
    B. W. Barry, and M. C. Meyer. The rheological properties of Carbopol gels I. Continuous shear and creep properties of Carbopol gels. Int. J. Pharm. 2:1–25 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Keat Theng Chow
    • 1
    • 2
  • Lai Wah Chan
    • 1
  • Paul W. S. Heng
    • 1
  1. 1.Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
  2. 2.Division of Pharmaceutics, College of PharmacyThe University of Texas at Austin, 1 University StationAustin, TexasUSA

Personalised recommendations