Pharmaceutical Research

, Volume 25, Issue 4, pp 896–901

A Novel Solid-in-oil Nanosuspension for Transdermal Delivery of Diclofenac Sodium

  • Hongyu Piao
  • Noriho Kamiya
  • Akihiko Hirata
  • Takeru Fujii
  • Masahiro Goto
Research Paper

Abstract

Purpose

We formulated a solid-in-oil nanosuspension (SONS) as a novel transdermal delivery carrier for diclofenac sodium (DFNa). The basic transdermal characteristics of the SONS were evaluated using a Yucatan micropig (YMP) skin model.

Methods

DFNa-sucrose erucate (i.e. surfactant) complexes were prepared via the formation of a water-in-oil emulsion. The complexes were suspended in isopropyl myristate (IPM) to form a SONS. The basic transdermal characteristics of the SONS were examined using full-thickness YMP dorsal skin in a Franz-type diffusion cell. DFNa powder suspended in IPM without complex formation was used as a control. The effect of the weight ratio of surfactant to DFNa on DFNa penetration of the skin was evaluated.

Results

DFNa was successfully dispersed into IPM as a nanosized suspension via complex formation with sucrose erucate. The resultant SONS increased the permeability flux of DFNa across the YMP skin by up to 3.8-fold compared with the control. The size of the SONS depended on the weight ratio of the surfactant to DFNa. The optimal weight ratio for the highest DFNa permeation was 8.8, at which point the mean diameter of the SONS was 14.4 nm.

Conclusion

The SONS formulation can enhance the percutaneous absorption of DFNa.

Key words

diclofenac sodium isopropyl myristate solid-in-oil nanosuspension. sucrose ester transdermal delivery Yucatan micropig skin 

References

  1. 1.
    E. C. Ku, J. M. Wasvary, and W. D. Cash. Diclofenac sodium (GP 45840, Voltaren), a potent inhibitor of prostaglandin synthetase. Biochem. Pharmacol. 24:641–643 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Sakamoto. NSAIDs caused gastric mucosal injury: with a special reference to COX-2. J. Nippon Med. Sch. 70:5–11 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Grahame. Transdermal non-steroidal anti-inflammatory agents. Br. J. Clin. Pract. 49:33–35 (1995).PubMedGoogle Scholar
  4. 4.
    G. L. Flynn and B. Stewart. Percutaneous drug penetration: choosing candidates for transdermal development. Drug Dev. Res. 13:169–185 (1988).CrossRefGoogle Scholar
  5. 5.
    M. Müller, H. Mascher, C. Kikuta, S. schäfer, M. Brunner, G. Dorner, and H. G. Eichler. Diclofenac concentrations in defined tissue layers after topical administration. Clin. Pharmacol. Ther. 62:292–299 (1997).Google Scholar
  6. 6.
    A. Arellano, S. Santoyo, C. Martin, and P. Ygartua. Enhancing of terpenes on the in vitro percutaneous absorption of diclofenac sodium. Int. J. Pharm. 130:141–145 (1996).CrossRefGoogle Scholar
  7. 7.
    A. Arellano, S. Santoyo, C. Martin, and P. Ygartua. Influence of propylene glycol and isopropyl myristate on the in vitro percutaneous penetration of diclofenac sodium from carbopol gels. Eur. J. Pharm. Sci. 7:129–135 (1998).CrossRefGoogle Scholar
  8. 8.
    S. Naito and H. Tominaga. Percutaneous absorption of diclofenac sodium ointment. Int. J. Pharm. 24:115–124 (1985).CrossRefGoogle Scholar
  9. 9.
    R. R. Boinpally, S. L. Zhou, S. Poondru, G. Devraj, and B. R. Jasti. Lecithin vesicles for topical delivery of diclofenac. Eur. J. Pharm. Biopharm. 56:389–392 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Escribano, A. C. Calpena, J. Queralt, R. Obach, and J. Domenech. Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur. J. Pharm. Sci. 19:203–210 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Dreher, P. Walde, P. Walther, and E. Wehrli. Interaction of a lecithin microemulsion gel with human Stratum corneum and its effect on transdermal transport. J. Control. Release. 45:131–140 (1997).CrossRefGoogle Scholar
  12. 12.
    K. Takahashi, H. Sakano, N. Numata, S. Kuroda, and N. Mizuno. Effect of fatty acid diesters on permeation of Anti-inflammatory drugs through rat skin. Drug Dev. Ind. Pharm. 10:1285–1294 (2002).CrossRefGoogle Scholar
  13. 13.
    H. Piao, N. Kamiya, J. Watanabe, H. Yokoyama, A. Hirata, T. Fuijii, I. Shimizu, S. Ito, and M. Goto. Oral delivery of diclofenac sodium using a novel solid-in-oil suspension. Int. J. Pharm. 313:159–162 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    C. S. Leopold and B. C. Lippold. An attempt of the penetration enhancing effects of lipophilic vesicles with differential scanning calorimetry (DSC). J. Pharm. Pharmacol. 47:276–281 (1995).PubMedGoogle Scholar
  15. 15.
    P. Karande, A. Jain, K. Ergun, V. Kispersky, and S. Mitragotri. Design Principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA 102:4688–4693 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    M. E. Roberts and K. R. Mueller. Comparisons of in vitro nitroglycerin (TNG) flux across Yucatan pig, Hairless mouse, and Human skins. Pharm. Res. 7:673–676 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    L. B. Lopes, J. H. Collett, M. Vitoria, and L. B. Bently. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur. J. Pharm. Biopharm. 60:25–30 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hongyu Piao
    • 1
  • Noriho Kamiya
    • 1
    • 2
  • Akihiko Hirata
    • 3
  • Takeru Fujii
    • 3
  • Masahiro Goto
    • 1
    • 2
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringKyushu UniversityFukuokaJapan
  2. 2.Center for Future ChemistryKyushu UniversityFukuokaJapan
  3. 3.ASPION CorporationTokushimaJapan

Personalised recommendations