Pharmaceutical Research

, Volume 25, Issue 3, pp 639–646 | Cite as

Involvement of Uric Acid Transporters in Alteration of Serum Uric Acid Level by Angiotensin II Receptor Blockers

  • Masanobu Sato
  • Takashi Iwanaga
  • Hideaki Mamada
  • Toshio Ogihara
  • Hikaru Yabuuchi
  • Tomoji Maeda
  • Ikumi Tamai
Research Paper



To examine the mechanisms of the alteration of serum uric acid level by angiotensin II receptor blockers (ARBs), the effects of ARBs on renal uric acid transporters, including OAT1, OAT3, OAT4, and MRP4, were evaluated.

Materials and Methods

Uptakes of uric acid by OAT1-expressing Flp293 cells, by Xenopus oocytes expressing OAT3 or OAT4, and by membrane vesicles from Sf9 cells expressing MRP4 were evaluated in the presence or absence of ARBs.


All ARBs inhibited uptake of uric acid or estrone-3-sulfate by OAT1, OAT3 and OAT4 in concentration dependent manners. Among them, the IC50 values of valsartan, olmesartan and pratosartan for OAT3 were comparable to clinically observed unbound maximum plasma concentration of ARBs. Candesartan, losartan, and telmisartan inhibited ATP-dependent uptake of uric acid by MRP4 at 10 μM. The IC50 value of losartan for MRP4 was comparable to the estimated kidney tissue concentration of losartan. No ARBs showed trans-stimulatory effects on the uptake of estrone-3-sulfate by OAT4.


Valsartan, olmesartan, and pratosartan could inhibit the OAT3-mediated uric acid secretion in clinical situations. Furthermore losartan could inhibit ATP-dependent uric acid secretion by MRP4. These effects may explain partially the alteration of serum uric acid level by ARBs.

Key words

angiotensin II receptor blockers kidney MRP4 OAT uric acid transporter 



angiotensin II receptor blocker




multidrug resistance-associated protein


organic anion transporter


serum uric acid


uric acid transporter



This study was supported in part by a Grant in Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. 1.
    M. H. Alderman, H. Cohen, S. Madhavan, and S. Kivlighn. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 34:144–150 (1999).PubMedGoogle Scholar
  2. 2.
    P. Verdecchia, G. Schillaci, G. Reboldi, S. C. Santeusanio, C. Porcellati, and P. Brunetti. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 36:1072–1078 (2000).PubMedGoogle Scholar
  3. 3.
    A. J. Manolis, E. Grossman, B. Jelakovic, A. Jacovides, D. C. Bernhardi, W. J. Cabrera, L. A. Watanabe, J. Barragan, N. Matadamas, A. Mendiola, K. S. Woo, J. R. Zhu, A. D. Mejia, T. Bunt, T. Dumortier, and R. D. Smith. Effects of losartan and candesartan monotherapy and losartan/hydrochlorothiazide combination therapy in patients with mild to moderate hypertension. Losartan Trial Investigators. Clin. Ther. 22:1186–1203 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    W. J. Elliott, D. A. Calhoun, P. T. DeLucca, L. P. Gazdick, D. E. Kerns, and R. K. Zeldin. Losartan versus valsartan in the treatment of patients with mild to moderate essential hypertension: data from a multicenter, randomized, double-blind, 12-week trial. Clin. Ther. 23:1166–1179 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Nakashima, T. Uematsu, K. Kosuge, and M. Kanamaru. Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur. J. Clin. Pharmacol. 42:333–335 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Burnier, B. Rutschmann, J. Nussberger, J. Versaggi, S. Shahinfar, B. Weaber, and H.R. Brunner salt-dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension 22:339–347 (1993).PubMedGoogle Scholar
  7. 7.
    J. P. Fauvel, S. Velon, N. Berra, N. Pozet, O. Madonna, P. Zech, and M. Laville. Effects of losartan on renal function in patients with essential hypertension. J. Cardiovasc. Pharmacol. 28:259–263 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    R. W. Rundles. The development of allopurinol. Arch. Intern. Med. 145:1492–1503 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    D. A. Sica and A. C. Schoolwerth. Chapter 16, Renal handling of organic anions and cations: Excretion of uric acid. In B. M. Brenner (ed.), The Kidney, 6th edn, Saunders, Philadelphia, 2000, pp. 680–700.Google Scholar
  10. 10.
    M. A. Hediger, R. J. Johnson, H. Miyazaki, and H. Endou. Molecular physiology of urate transport. Physiology 20:125–133 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Enomoto, H. Kimura, A. Chairoungdua, Y Shigeta, P. Jutabha, S. H. Cha, M Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimokata, T. Niwa, Y. Kanai, and H. Endou. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452 (2002).PubMedGoogle Scholar
  12. 12.
    Y. Hagos, D. Stein, B. Ugele, G. Burckhardt, and A. Bahn. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 18:430–437 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Icida, M. Hosoyamada, H. Kimura, M. Takeda, Y. Utsunomiya, T. Hosoya, and H. Endou. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 63:143–155 (2003).CrossRefGoogle Scholar
  14. 14.
    S. H. Cha, T. Sekine, J. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59:1277–1286 (2001).PubMedGoogle Scholar
  15. 15.
    R. A. M. H. van Aubel, P. H. E. Smeets, J. J. M. W. van den Heuvel, and F. G. M. Russel. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal. Physiol. 288:F327–F333 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Ishiguro, A. Saito, K. Yokoyama, M. Morikawa, T. Igarashi, and I Tamai. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab. Dispos. 33:495–499 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    A Tsuji, A. Sakata, and I Tamai. Tissue distribution of the multidrug-resistance gene product P-glycoprotein and its physiological function. Nippon Rinsho 55:1059–1063 (1997).PubMedGoogle Scholar
  18. 18.
    R. Ohashi, I Tamai, H. Yabuuchi, J. Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778–784 (1999).PubMedGoogle Scholar
  19. 19.
    T. Iwanaga, M. Sato, T. Maeda, T. Ogihara, and I Tamai. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J. Pharmacol. Exp. Ther. 320:211–217 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Hosoyamada, T. Sekine, Y. Kanai, and H. Endou. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276:F122–F128 (1999).PubMedGoogle Scholar
  21. 21.
    E. R. Liman, J. Tytgat, and P. Hess. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Iwanaga, D. Kobayashi, M. Hirayama, T. Maeda, and I. Tamai. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab. Dispos. 33:1791–1795 (2005).PubMedGoogle Scholar
  23. 23.
    M. Tsuda-Tsukimoto, T. Maeda, T. Iwanaga, T. Kume, and I Tamai. Characterization of hepatobiliary transport systems of a novel α4β1/α4β7 dual antagonist, TR-14035. Pharm. Res. 23:2646–2656 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Rius, A. T. Nies, J. Hummel-Eisenbeiss, G. Jedlitschky, and D. Keppler. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 38:374–384 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Yamashita, H. Ohtani, N. Koyabu, F. Ushigome, H. Satoh, H. Murakami, T. Uchiumi, T. Nakamura, M. Kuwano, M. Tsujimoto, and Y. Sawada. Inhibitory effect of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic transporter 4. J. Pharm. Pharmacol. 58:1499–1505 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Uchino, I Tamai, K. Yamashita, Y. Minemoto, Y. Sai, H. Yabuuchi, K. Miyamoto, E. Takeda, and A Tsuji. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem. Biophys. Res. Commun. 270:254–259 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Masanobu Sato
    • 1
  • Takashi Iwanaga
    • 1
  • Hideaki Mamada
    • 1
  • Toshio Ogihara
    • 2
  • Hikaru Yabuuchi
    • 3
  • Tomoji Maeda
    • 1
  • Ikumi Tamai
    • 1
  1. 1.Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
  2. 2.Department of Geriatric MedicineOsaka University Graduate School of MedicineOsakaJapan
  3. 3.GenoMembrane, Inc.YokohamaJapan

Personalised recommendations