Pharmaceutical Research

, Volume 24, Issue 9, pp 1745–1758 | Cite as

Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development

Expert Review

Abstract

The blood–brain barrier (BBB) forms an interface between the circulating blood and the brain and possesses various carrier-mediated transport systems for small molecules to support and protect CNS function. For example, the blood-to-brain influx transport systems supply nutrients, such as glucose and amino acids. Consequently, xenobiotic drugs recognized by influx transporters are expected to have high permeability across the BBB. On the other hand, efflux transporters, including ATP-binding cassette transporters such as P-glycoprotein located at the luminal membrane of endothelial cells, function as clearance systems for metabolites and neurotoxic compounds produced in the brain. Drugs recognized by these transporters are expected to show low BBB permeability and low distribution to the brain. Despite recent progress, the transport mechanisms at the BBB have not been fully clarified yet, especially in humans. However, an understanding of the human BBB transport system is critical, because species differences mean that it can be difficult to extrapolate data obtained in experimental animals during drug development to humans. Recent progress in methodologies is allowing us to address this issue. Positron emission tomography can be used to evaluate the activity of human BBB transport systems in vivo. Proteomic studies may also provide important insights into human BBB function. Construction of a human BBB transporter atlas would be a most important advance from the viewpoint of CNS drug discovery and drug delivery to the brain.

Key words

blood–brain barrier brain capillary endothelial cells carrier-mediated transport efflux transport influx transport pharmacoproteomics 

References

  1. 1.
    I. Kola, and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug. Discov. 3:711–715 (2004).PubMedGoogle Scholar
  2. 2.
    W. M. Pardridge. Crossing the blood–brain barrier: are we getting it right? Drug Discov. Today. 6:1–2 (2001).PubMedGoogle Scholar
  3. 3.
    W. M. Pardridge. William Pardridge discusses the lack of BBB research. Interview by Rebecca N. Lawrence. Drug Discov. Today 7:223–226 (2002).PubMedGoogle Scholar
  4. 4.
    R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, and W. M. Pardridge. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 96:12079–12084 (1999).PubMedGoogle Scholar
  5. 5.
    T. Kageyama, M. Nakamura, A. Matsuo, Y. Yamasaki, Y. Takakura, M. Hashida, Y. Kanai, M. Naito, T. Tsuruo, N. Minato, and S. Shimohama. The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res. 879:115–121 (2000).PubMedGoogle Scholar
  6. 6.
    P. Gomes, and P. Soares-da-Silva. l-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res. 829:143–150 (1999).PubMedGoogle Scholar
  7. 7.
    N. J. Abbott, and I. A. Romero. Transporting therapeutics across the blood–brain barrier. Mol. Med. Today 2:106–113 (1996).PubMedGoogle Scholar
  8. 8.
    J. H. Pincus, and K. Barry. Protein redistribution diet restores motor function in patients with dopa-resistant “off” periods. Neurology 38:481–483 (1988).PubMedGoogle Scholar
  9. 9.
    C. L. Farrell, and W. M. Pardridge. Ultrastructural localization of blood–brain barrier-specific antibodies using immunogold-silver enhancement techniques. J. Neurosci. Methods 37:103–110 (1991).PubMedGoogle Scholar
  10. 10.
    D. B. Agus, S. S. Gambhir, W. M. Pardridge, C. Spielholz, J. Baselga, J. C. Vera, and D. W. Golde. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin. Invest. 100:2842–2848 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Hosoya, A. Minamizono, K. Katayama, T. Terasaki, and M. Tomi. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest. Ophthalmol. Vis. Sci. 45:1232–1239 (2004).PubMedGoogle Scholar
  12. 12.
    R. Polt, F. Porreca, L. Z. Szabo, E. J. Bilsky, P. Davis, T. J. Abbruscato, T. P. Davis, R. Harvath, H. I. Yamamura, and V. J. Hruby. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood–brain barrier. Proc. Natl. Acad. Sci. U.S.A. 91:7114–7118 (1994).PubMedGoogle Scholar
  13. 13.
    T. Halmos, M. Santarromana, K. Antonakis, and D. Scherman. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur. J. Pharmacol. 318:477–484 (1996).PubMedGoogle Scholar
  14. 14.
    Y. Kido, I. Tamai, M. Okamoto, F. Suzuki, and A. Tsuji. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood–brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm. Res. 17:55–62 (2000).PubMedGoogle Scholar
  15. 15.
    J. E. Cremer, V. J. Cunningham, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf. Kinetics of blood–brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33:439–445 (1979).PubMedGoogle Scholar
  16. 16.
    L. Pellerin, G. Pellegri, J. L. Martin, and P. J. Magistretti. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl. Acad. Sci. U.S.A. 95:3990–3995 (1998).PubMedGoogle Scholar
  17. 17.
    Q. R. Smith, and J. Stoll. Blood-brain barrier amino acid transport, Introduction to blood–brain barrier: methodology and pathology. Cambridge University Press, 1998, pp. 188–197.Google Scholar
  18. 18.
    J. Y. Li, R. J. Boado, and W. M. Pardridge. Cloned blood–brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. J. Cereb. Blood Flow Metab. 21:929–936 (2001).PubMedGoogle Scholar
  19. 19.
    B. Gao, B. Hagenbuch, G. A. Kullak-Ublick, D. Benke, A. Aguzzi, and P. J. Meier. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood–brain barrier. J. Pharmacol. Exp. Ther. 294:73–79 (2000).PubMedGoogle Scholar
  20. 20.
    M. Yamazaki, H. Fukuoka, O. Nagata, H. Kato, Y. Ito, T. Terasaki, and A. Tsuji. Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol. Pharm. Bull. 17:676–679 (1994).PubMedGoogle Scholar
  21. 21.
    M. Yamazaki, T. Terasaki, K. Yoshioka, O. Nagata, H. Kato, Y. Ito, and A. Tsuji. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: mepyramine uptake into bovine brain capillary endothelial cells in primary monolayer cultures. Pharm. Res. 11:975–978 (1994).PubMedGoogle Scholar
  22. 22.
    M. Yamazaki, T. Terasaki, K. Yoshioka, O. Nagata, H. Kato, Y. Ito, and A. Tsuji. Carrier-mediated transport of H1-antagonist at the blood–brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm. Res. 11:1516–1518 (1994).PubMedGoogle Scholar
  23. 23.
    A. Gjedde, and M. Rasmussen. Blood–brain glucose transport in the conscious rat: comparison of the intravenous and intracarotid injection methods. J. Neurochem. 35:1375–1381 (1980).PubMedGoogle Scholar
  24. 24.
    W. M. Pardridge. Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28:25–39 (1988).PubMedGoogle Scholar
  25. 25.
    N. Ishiguro, T. Nozawa, A. Tsujihata, A. Saito, W. Kishimoto, K. Yokoyama, T. Yotsumoto, K. Sakai, T. Igarashi, and I. Tamai. Influx and efflux transport of H1-antagonist epinastine across the blood-brain barrier. Drug. Metab. Dispos. 32:519–524 (2004).PubMedGoogle Scholar
  26. 26.
    S. Ohtsuki, M. Tachikawa, H. Takanaga, H. Shimizu, M. Watanabe, K. Hosoya, and T. Terasaki. The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22:1327–1335 (2002).PubMedGoogle Scholar
  27. 27.
    M. Tachikawa, M. Fukaya, T. Terasaki, S. Ohtsuki, and M. Watanabe. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20:144–160 (2004).PubMedGoogle Scholar
  28. 28.
    M. Balestrino, M. Lensman, M. Parodi, L. Perasso, R. Rebaudo, R. Melani, S. Polenov, and A. Cupello. Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23:221–229 (2002).PubMedGoogle Scholar
  29. 29.
    G. J. Brewer, and T. W. Wallimann. Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74:1968–1978 (2000).PubMedGoogle Scholar
  30. 30.
    P. Dechent, P. J. Pouwels, B. Wilken, F. Hanefeld, and J. Frahm. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 277:R698–R704 (1999).PubMedGoogle Scholar
  31. 31.
    B. Marescau, D. R. Deshmukh, M. Kockx, I. Possemiers, I. A. Qureshi, P. Wiechert, and P. P. De Deyn. Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41:526–532 (1992).PubMedGoogle Scholar
  32. 32.
    E. Omerovic, E. Bollano, M. Lorentzon, M. Walser, L. Mattsson-Hulten, and J. Isgaard. Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm. IGF Res. 13:239–245 (2003).PubMedGoogle Scholar
  33. 33.
    M. Shojaiefard, D. L. Christie, and F. Lang. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem. Biophys. Res. Commun. 334:742–746 (2005).PubMedGoogle Scholar
  34. 34.
    M. Shojaiefard, D. L. Christie, and F. Lang. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem. Biophys. Res. Commun. 341:945–949 (2006).PubMedGoogle Scholar
  35. 35.
    Y. S. Kang, S. Ohtsuki, H. Takanaga, M. Tomi, K. Hosoya, and T. Terasaki. Regulation of taurine transport at the blood–brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J. Neurochem. 83:1188–1195 (2002).PubMedGoogle Scholar
  36. 36.
    I. Tamai, M. Senmaru, T. Terasaki, and A. Tsuji. Na(+)- and Cl(-)-dependent transport of taurine at the blood–brain barrier. Biochem. Pharmacol. 50:1783–1793 (1995).PubMedGoogle Scholar
  37. 37.
    K. Hosoya, M. Tomi, S. Ohtsuki, H. Takanaga, S. Saeki, Y. Kanai, H. Endou, M. Naito, T. Tsuruo, and T. Terasaki. Enhancement of l-cystine transport activity and its relation to xCT gene induction at the blood–brain barrier by diethyl maleate treatment. J. Pharmacol. Exp. Ther. 302:225–231 (2002).PubMedGoogle Scholar
  38. 38.
    C. Cordon-Cardo, J. P. O’Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. U.S.A. 86:695–698 (1989).PubMedGoogle Scholar
  39. 39.
    A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life. Sci. 51:1427–1437 (1992).PubMedGoogle Scholar
  40. 40.
    T. Ooie, T. Terasaki, H. Suzuki, and Y. Sugiyama. Kinetic evidence for active efflux transport across the blood–brain barrier of quinolone antibiotics. J. Pharmacol. Exp. Ther. 283:293–304 (1997).PubMedGoogle Scholar
  41. 41.
    T. Terasaki, and K. Hosoya. The blood–brain barrier efflux transporters as a detoxifying system for the brain. Adv. Drug Deliv. Rev. 36:195–209 (1999).PubMedGoogle Scholar
  42. 42.
    A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).PubMedGoogle Scholar
  43. 43.
    M. Dean, A. Rzhetsky, and R. Allikmets. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11:1156–1166 (2001).PubMedGoogle Scholar
  44. 44.
    S. Ohtsuki, H. Yamaguchi, T. Asashima, and T. Terasaki. Establishing a method to isolate rat brain capillary endothelial cells by magnetic cell sorting and dominant mRNA expression of multidrug resistance-associated protein 1 and 4 in highly purified rat brain capillary endothelial cells. Pharm. Res. 24(4):688–694 (2007).PubMedGoogle Scholar
  45. 45.
    H. Gutmann, M. Torok, G. Fricker, J. Huwyler, C. Beglinger, and J. Drewe. Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro. Drug Metab. Dispos. 27:937–941 (1999).PubMedGoogle Scholar
  46. 46.
    A. T. Nies, G. Jedlitschky, J. Konig, C. Herold-Mende, H. H. Steiner, H. P. Schmitt, and D. Keppler. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360 (2004).PubMedGoogle Scholar
  47. 47.
    M. Leggas, M. Adachi, G. L. Scheffer, D. Sun, P. Wielinga, G. Du, K. E. Mercer, Y. Zhuang, J. C. Panetta, B. Johnston, R. J. Scheper, C. F. Stewart, and J. D. Schuetz. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol. 24:7612–7621 (2004).PubMedGoogle Scholar
  48. 48.
    Z. S. Chen, K. Lee, and G. D. Kruh. Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276:33747–33754 (2001).PubMedGoogle Scholar
  49. 49.
    J. D. Schuetz, M. C. Connelly, D. Sun, S. G. Paibir, P. M. Flynn, R. V. Srinivas, A. Kumar, and A. Fridland. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 5:1048–1051 (1999).PubMedGoogle Scholar
  50. 50.
    S. Mori, S. Ohtsuki, H. Takanaga, T. Kikkawa, Y. S. Kang, and T. Terasaki. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J. Neurochem. 90:931–941 (2004).PubMedGoogle Scholar
  51. 51.
    T. Terasaki, and W. M. Pardridge. Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood–brain barrier. J. Infect. Dis. 158:630–632 (1988).PubMedGoogle Scholar
  52. 52.
    H. C. Cooray, C. G. Blackmore, L. Maskell, and M. A. Barrand. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063 (2002).PubMedGoogle Scholar
  53. 53.
    S. Hori, S. Ohtsuki, M. Tachikawa, N. Kimura, T. Kondo, M. Watanabe, E. Nakashima, and T. Terasaki. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J. Neurochem. 90:526–536 (2004).PubMedGoogle Scholar
  54. 54.
    M. Tachikawa, M. Watanabe, S. Hori, M. Fukaya, S. Ohtsuki, T. Asashima, and T. Terasaki. Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J. Neurochem. 95:294–304 (2005).PubMedGoogle Scholar
  55. 55.
    K. Hosoya, M. Sugawara, H. Asaba, and T. Terasaki. Blood-brain barrier produces significant efflux of l-aspartic acid but not d-aspartic acid: in vivo evidence using the brain efflux index method. J. Neurochem. 73:1206–1211 (1999).PubMedGoogle Scholar
  56. 56.
    K. Tetsuka, H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki. The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood–brain barrier. J. Neurochem. 87:891–901 (2003).PubMedGoogle Scholar
  57. 57.
    R. L. O’Kane, I. Martinez-Lopez, M. R. DeJoseph, J. R. Vina, and R. A. Hawkins. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J. Biol. Chem. 274:31891–31895 (1999).PubMedGoogle Scholar
  58. 58.
    M. Palacin, R. Estevez, J. Bertran, and A. Zorzano. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78:969–1054 (1998).PubMedGoogle Scholar
  59. 59.
    H. Takanaga, S. Ohtsuki, K. Hosoya, and T. Terasaki. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood–brain barrier. J. Cereb. Blood Flow Metab. 21:1232–1239 (2001).PubMedGoogle Scholar
  60. 60.
    K. Wakayama, S. Ohtsuki, H. Takanaga, K. Hosoya, and T. Terasaki. Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci. Res. 44:173–180 (2002).PubMedGoogle Scholar
  61. 61.
    O. T. Wolf, and C. Kirschbaum. Actions of dehydroepiandrosterone and its sulfate in the central nervous system: effects on cognition and emotion in animals and humans. Brain Res. Brain Res. Rev. 30:264–288 (1999).PubMedGoogle Scholar
  62. 62.
    H. Asaba, K. Hosoya, H. Takanaga, S. Ohtsuki, E. Tamura, T. Takizawa, and T. Terasaki. Blood–brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J. Neurochem. 75:1907–1916 (2000).PubMedGoogle Scholar
  63. 63.
    B. Gao, B. Stieger, B. Noe, J. M. Fritschy, and P. J. Meier. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47:1255–1264 (1999).PubMedGoogle Scholar
  64. 64.
    L. Li, P. J. Meier, and N. Ballatori. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol. Pharmacol. 58:335–340 (2000).PubMedGoogle Scholar
  65. 65.
    C. Dagenais, J. Ducharme, and G. M. Pollack. Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci. Lett. 301:155–158 (2001).PubMedGoogle Scholar
  66. 66.
    S. Ohtsuki, T. Takizawa, H. Takanaga, S. Hori, K. Hosoya, and T. Terasaki. Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J. Neurochem. 90:743–749 (2004).PubMedGoogle Scholar
  67. 67.
    D. Sugiyama, H. Kusuhara, H. Taniguchi, S. Ishikawa, Y. Nozaki, H. Aburatani, and Y. Sugiyama. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood–brain barrier: high affinity transporter for thyroxine. J. Biol. Chem. 278:43489–43495 (2003).PubMedGoogle Scholar
  68. 68.
    J. Y. Li, R. J. Boado, and W. M. Pardridge. Blood–brain barrier genomics. J. Cereb. Blood Flow Metab. 21:61–68 (2001).PubMedGoogle Scholar
  69. 69.
    B. M. Emanuelsson, L. Paalzow, and M. Sunzel. Probenecid-induced accumulation of 5-hydroxyindoleacetic acid and homovanillic acid in rat brain. J. Pharm. Pharmacol. 39:705–710 (1987).PubMedGoogle Scholar
  70. 70.
    C. S. Kim, C. R. Roe, J. D. Mann, and G. R. Breese. Octanoic acid produces accumulation of monoamine acidic metabolites in the brain: interaction with organic anion transport at the choroid plexus. J. Neurochem. 58:1499–1503 (1992).PubMedGoogle Scholar
  71. 71.
    S. Mori, H. Takanaga, S. Ohtsuki, T. Deguchi, Y. S. Kang, K. Hosoya, and T. Terasaki. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 23:432–440 (2003).PubMedGoogle Scholar
  72. 72.
    S. Ohtsuki, T. Kikkawa, S. Mori, S. Hori, H. Takanaga, M. Otagiri, and T. Terasaki. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J. Pharmacol. Exp. Ther. 309:1273–1281 (2004).PubMedGoogle Scholar
  73. 73.
    S. Ohtsuki, H. Asaba, H. Takanaga, T. Deguchi, K. Hosoya, M. Otagiri, and T. Terasaki. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J. Neurochem. 83:57–66 (2002).PubMedGoogle Scholar
  74. 74.
    E. Jacqz-Aigrain, S. Nafa, Y. Medard, E. Bessa, B. Lescoeur, and E. Vilmer. Pharmacokinetics and distribution of 6-mercaptopurine administered intravenously in children with lymphoblastic leukaemia. Eur. J. Clin. Pharmacol. 53:71–74 (1997).PubMedGoogle Scholar
  75. 75.
    Y. Deguchi, Y. Yokoyama, T. Sakamoto, H. Hayashi, T. Naito, S. Yamada, and R. Kimura. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood–brain barrier. Life Sci. 66:649–662 (2000).PubMedGoogle Scholar
  76. 76.
    M. J. Painter, C. Pippenger, C. Wasterlain, M. Barmada, W. Pitlick, G. Carter, and S. Abern. Phenobarbital and phenytoin in neonatal seizures: metabolism and tissue distribution. Neurology 31:1107–1112 (1981).PubMedGoogle Scholar
  77. 77.
    E. M. Cornford, C. P. Diep, and W. M. Pardridge. Blood–brain barrier transport of valproic acid. J. Neurochem. 44:1541–1550 (1985).PubMedGoogle Scholar
  78. 78.
    K. D. Adkison, and D. D. Shen. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J. Pharmacol. Exp. Ther. 276:1189–1200 (1996).PubMedGoogle Scholar
  79. 79.
    A. Kakee, H. Takanaga, K. Hosoya, Y. Sugiyama, and T. Terasaki. In vivo evidence for brain-to-blood efflux transport of valproic acid across the blood–brain barrier. Microvasc. Res. 63:233–238 (2002).PubMedGoogle Scholar
  80. 80.
    I. Tamai, H. Takanaga, H. Maeda, Y. Sai, T. Ogihara, H. Higashida, and A. Tsuji. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem. Biophys. Res. Commun. 214:482–489 (1995).PubMedGoogle Scholar
  81. 81.
    H. Huai-Yun, D. T. Secrest, K. S. Mark, D. Carney, C. Brandquist, W. F. Elmquist, and D. W. Miller. Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Commun. 243:816–820 (1998).PubMedGoogle Scholar
  82. 82.
    J. P. Gibbs, M. C. Adeyeye, Z. Yang, and D. D. Shen. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res. 58:53–66 (2004).PubMedGoogle Scholar
  83. 83.
    M. Katoh, N. Suzuyama, T. Takeuchi, S. Yoshitomi, S. Asahi, and T. Yokoi. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J. Pharm. Sci. 95:2673–2683 (2006).PubMedGoogle Scholar
  84. 84.
    M. Yamazaki, W. E. Neway, T. Ohe, I. Chen, J. F. Rowe, J. H. Hochman, M. Chiba, and J. H. Lin. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296:723–735 (2001).PubMedGoogle Scholar
  85. 85.
    H. Tahara, M. Shono, H. Kusuhara, H. Kinoshita, E. Fuse, A. Takadate, M. Otagiri, and Y. Sugiyama. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm. Res. 22:647–660 (2005).PubMedGoogle Scholar
  86. 86.
    F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).PubMedGoogle Scholar
  87. 87.
    D. Virgintino, D. Robertson, M. Errede, V. Benagiano, F. Girolamo, E. Maiorano, L. Roncali, and M. Bertossi. Expression of P-glycoprotein in human cerebral cortex microvessels. J. Histochem. Cytochem. 50:1671–1676 (2002).PubMedGoogle Scholar
  88. 88.
    P. L. Golden, and W. M. Pardridge. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain. Res. 819:143–146 (1999).PubMedGoogle Scholar
  89. 89.
    R. Bendayan, P. T. Ronaldson, D. Gingras, and M. Bendayan. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem. 54:1159–1167 (2006).PubMedGoogle Scholar
  90. 90.
    S. Seetharaman, M. A. Barrand, L. Maskell, and R. J. Scheper. Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem. 70:1151–1159 (1998).PubMedCrossRefGoogle Scholar
  91. 91.
    Y. Ikoma, A. Takano, H. Ito, H. Kusuhara, Y. Sugiyama, R. Arakawa, T. Fukumura, R. Nakao, K. Suzuki, and T. Suhara. Quantitative analysis of 11C-verapamil transfer at the human blood–brain barrier for evaluation of P-glycoprotein function. J. Nucl. Med. 47:1531–1537 (2006).PubMedGoogle Scholar
  92. 92.
    P. Hsiao, L. Sasongko, J. M. Link, D. A. Mankoff, M. Muzi, A. C. Collier, and J. D. Unadkat. Verapamil P-glycoprotein transport across the rat blood–brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J. Pharmacol. Exp. Ther. 317:704–710 (2006).PubMedGoogle Scholar
  93. 93.
    Y. J. Lee, J. Maeda, H. Kusuhara, T. Okauchi, M. Inaji, Y. Nagai, S. Obayashi, R. Nakao, K. Suzuki, Y. Sugiyama, and T. Suhara. In vivo evaluation of P-glycoprotein function at the blood–brain barrier in nonhuman primates using [11C]verapamil. J. Pharmacol. Exp. Ther. 316:647–653 (2006).PubMedGoogle Scholar
  94. 94.
    A. Takano, H. Kusuhara, T. Suhara, I. Ieiri, T. Morimoto, Y. J. Lee, J. Maeda, Y. Ikoma, H. Ito, K. Suzuki, and Y. Sugiyama. Evaluation of in vivo P-glycoprotein function at the blood–brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J. Nucl. Med. 47:1427–1433 (2006).PubMedGoogle Scholar
  95. 95.
    H. Kubota, H. Ishihara, T. Langmann, G. Schmitz, B. Stieger, H. G. Wieser, Y. Yonekawa, and K. Frei. Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res. 68:213–228 (2006).PubMedGoogle Scholar
  96. 96.
    B. H. Huang, M. H. Wu, H. M. Tsao, C. T. Tai, K. T. Lee, Y. J. Lin, M. H. Hsieh, S. H. Lee, Y. J. Chen, J. Y. Kuo, and S. A. Chen. Morphology of the thoracic veins and left atrium in paroxysmal atrial fibrillation initiated by superior caval vein ectopy. J. Cardiovasc. Electrophysiol. 16:411–417 (2005).PubMedCrossRefGoogle Scholar
  97. 97.
    Y. C. Lin, V. L. Ellingrod, J. R. Bishop, and D. D. Miller. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther. Drug Monit. 28:668–672 (2006).PubMedGoogle Scholar
  98. 98.
    R. J. Boado, and W. M. Pardridge. The brain-type glucose transporter mRNA is specifically expressed at the blood–brain barrier. Biochem. Biophys. Res. Commun. 166:174–179 (1990).PubMedGoogle Scholar
  99. 99.
    S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, and T. Terasaki. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J. Neurochem. 89:503–513 (2004).PubMedGoogle Scholar
  100. 100.
    V. Berezowski, C. Landry, S. Lundquist, L. Dehouck, R. Cecchelli, M. P. Dehouck, and L. Fenart. Transport screening of drug cocktails through an in vitro blood–brain barrier: is it a good strategy for increasing the throughput of the discovery pipeline? Pharm. Res. 21:756–760 (2004).PubMedGoogle Scholar
  101. 101.
    R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V. V. Buee-Scherrer, C. Duhem, S. Lundquist, M. Rentfel, G. Torpier, and M. P. Dehouck. In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:165–178 (1999).PubMedGoogle Scholar
  102. 102.
    T. Terasaki, S. Ohtsuki, S. Hori, H. Takanaga, E. Nakashima, and K. Hosoya. New approaches to in vitro models of blood–brain barrier drug transport. Drug Discov. Today 8:944–954 (2003).PubMedGoogle Scholar
  103. 103.
    S. Ohtsuki, S. Sato, H. Yamaguchi, M. Kamoi, T. Asashima, and T. Terasaki. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J. Cell. Physiol. 210:81–86 (2007).PubMedGoogle Scholar
  104. 104.
    B. B. Weksler, E. A. Subileau, N. Perriere, P. Charneau, K. Holloway, M. Leveque, H. Tricoire-Leignel, A. Nicotra, S. Bourdoulous, P. Turowski, D. K. Male, F. Roux, J. Greenwood, I. A. Romero, and P. O. Couraud. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19:1872–1874 (2005).PubMedGoogle Scholar
  105. 105.
    S. Ohtsuki, S. Hori, and T. Terasaki. Molecular mechanisms of drug influx and efflux transport at the blood–brain barrier (in Japanese). Nippon Yakurigaku Zasshi 122:55–64 (2003).PubMedGoogle Scholar
  106. 106.
    Q. R. Smith, S. Momma, M. Aoyagi, and S. I. Rapoport. Kinetics of neutral amino acid transport across the blood–brain barrier. J. Neurochem. 49:1651–1658 (1987).PubMedGoogle Scholar
  107. 107.
    Q. R. Smith, Y. Takasato, and S. I. Rapoport. Kinetic analysis of l-leucine transport across the blood–brain barrier. Brain. Res. 311:167–170 (1984).PubMedGoogle Scholar
  108. 108.
    J. Stoll, K. C. Wadhwani, and Q. R. Smith. Identification of the cationic amino acid transporter (System y+) of the rat blood–brain barrier. J. Neurochem. 60:1956–1959 (1993).PubMedGoogle Scholar
  109. 109.
    L. A. Wade and R. Katzman. Synthetic amino acids and the nature of l-DOPA transport at the blood-brain barrier. J. Neurochem. 25:837–842 (1975).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  2. 2.SORSTJapan Science and Technology AgencyTokyoJapan

Personalised recommendations