Pharmaceutical Research

, Volume 24, Issue 11, pp 2099–2109 | Cite as

Micelles of Different Morphologies—Advantages of Worm-like Filomicelles of PEO-PCL in Paclitaxel Delivery

  • Shenshen Cai
  • Kandaswamy Vijayan
  • Debbie Cheng
  • Eliana M. Lima
  • Dennis E. Discher
Research Paper

Abstract

Purpose

Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly (ε-caprolactone) (PEO [5 kDa]–PCL [6.5 kDa]) in order to compare loading and delivery of hydrophobic drugs.

Materials and Methods

Worm-like micelles of this degradable copolymer are nanometers in cross-section and spontaneously assemble to stable lengths of microns, resembling filoviruses in some respects and thus suggesting the moniker ‘filomicelles’. The highly flexible worm-like micelles can also be sonicated to generate kinetically stable spherical micelles composed of the same copolymer.

Results

The fission process exploits the finding that the PCL cores are fluid, rather than glassy or crystalline, and core-loading of the hydrophobic anticancer drug delivery, paclitaxel (TAX) shows that the worm-like micelles load and solubilize twice as much drug as spherical micelles. In cytotoxicity tests that compare to the clinically prevalent solubilizer, Cremophor® EL, both micellar carriers are far less toxic, and both types of TAX-loaded micelles also show fivefold greater anticancer activity on A549 human lung cancer cells.

Conclusion

PEO–PCL based worm-like filomicelles appear to be promising pharmaceutical nanocarriers with improved solubilization efficiency and comparable stability to spherical micelles, as well as better safety and efficacy in vitro compared to the prevalent Cremophor® EL TAX formulation.

Key words

lung carcinoma cells paclitaxel poly(ɛ-caprolactone) poly(ethylene oxide)  worm-like micelle 

References

  1. 1.
    M. J. Vicent, R. Duncan. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 24:39–47 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Malugin, P. Kopeckova, and J. Kopecek. HPMA copolymer-bound doxorubicin induces apoptosis in ovarian carcinoma cells by the disruption of mitochondrial function. Mol. Pharmacol. 3:351–361 (2006).CrossRefGoogle Scholar
  3. 3.
    Y. Luo, M. R. Ziebell, and G. D. Prestwich. A hyaluronic acid–taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules. 1:208–218 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    L. E. van Vlerkenand, and M. M. Amiji. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv. 3:205–216 (2006).CrossRefGoogle Scholar
  5. 5.
    B. Liu, S. Jiang, W. Zhang, F. Ye, Y. H. Wang, J. Wu, and D. Y. Zhang. Novel biodegradable HSAM nanoparticle for drug delivery. Oncol. Rep. 15:957–961 (2006).PubMedGoogle Scholar
  6. 6.
    V. P. Torchilin. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4:145–160 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    X. Guo, and F. C. Szoka, Jr. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36:335–341 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Ahmed, R. I. Pakunlu, G. Srinivas, A. Brannan, F. Bates, M. L. Klein, T. Minko, and D. E. Discher. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharmacol. 3:340–350 (2006).CrossRefGoogle Scholar
  9. 9.
    F. Ahmed, R. I. Pakunlu, A. Brannan, F. Bates, T. Minko, and D. E. Discher. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release. 116:150–158 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    J. P. Xu, J. Ji, W. D. Chen, and J. C. Shen. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J. Control. Release. 107:502–512 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Bae, W. D. Jang, N. Nishiyama, S. Fukushima, and K. Kataoka. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. BioSyst. 1:242–250 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Wang, D. Mongayt, and V. P. Torchilin. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)–lipid conjugate and positively charged lipids. J. Drug Target. 13:73–80 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D. E. Discher. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. 2:249–255 (2007).CrossRefGoogle Scholar
  14. 14.
    X. Tong, J. Zhou, and Y. Tan. Liquid chromatography/tandem triple-quadrupole mass spectrometry for determination of paclitaxel in rat tissues. Rapid Commun. Mass Spectrom. 20:1905–1912 (2006).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–3716 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    S. C. Kim, J. Yu, J. W. Lee, E. S. Park, and S. C. Chi. Sensitive HPLC method for quantitation of paclitaxel (Genexol in biological samples with application to preclinical pharmacokinetics and biodistribution. J. Pharm. Biomed. Anal. 39:170–176 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    L. M. Han, J. Guo, L. J. Zhang, Q. S. Wang, and X. L. Fang. Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with Pluronic P123. Acta Pharmacol. Sin. 27:747–753 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    O. Soga, C. F. van Nostrum, M. Fens, C. J. Rijcken, R. M. Schiffelers, G. Storm, and W. E. Hennink. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release. 103:341–353 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    R. T. Liggins, W. L. Hunter, and H. M. Burt. Solid-state characterization of paclitaxel. J. Pharm. Sci. 86:1458–1463 (1997).PubMedCrossRefGoogle Scholar
  20. 20.
    S. C. Kim, D. W. Kim, Y. H. Shim, J. S. Bang, H. S. Oh, S. Wan Kim, and M. H. Seo. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release. 72:191–202 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Cheon Lee, C. Kim, I. Chan Kwon, H. Chung, and S. Young Jeong. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J. Control. Release. 89:437–446 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Meyer, D. Waidelich, and A. W. Frahm. Separation and first structure elucidation of Cremophor EL-components by hyphenated capillary electrophoresis and delayed extraction-matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 23:1053–1062 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Mo, and L. Y. Lim. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J. Control. Release. 107:30–42 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Q. Liu, Y. W. Tong, and Y. Y. Yang. Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-c o-glycolide) for controlled delivery of paclitaxel. Mol. BioSyst. 1:158–165 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Xie, C. H. Wang. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm. Res. 22:2079–2090 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release. 109:169–188 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    F. Yoshii, D. Darwis, H. Mitomo, and K. Makuuchi. Crosslinking of poly(beta-caprolactone) by radiation technique and its biodegradability. Radiat. Phys. Chem. 57:417–420 (2000).CrossRefGoogle Scholar
  28. 28.
    R. T. Liggins, T. Cruz, W. Min, L. Liang, W. L. Hunter, and H. M. Burt. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm. Res. 53:363–372 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    Z. G. Gao, D. H. Lee, D. I. Kim, and Y. H. Bae. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J. Drug Target. 13:391–397 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Geng, and D. E. Discher. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J. Am. Chem. Soc. 127:12780–12781 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Dalhaimer, F. S. Bates, and D. E. Discher. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules. 36:6873–6877 (2003).CrossRefGoogle Scholar
  32. 32.
    Y. Kim, P. Dalhaimer, D. A. Christian, and D. E. Discher. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology. 16:S484–S491 (2005).CrossRefGoogle Scholar
  33. 33.
    Y. Geng, F. Ahmed, N. Bhasin, and D. E. Discher. Visualizing worm micelle dynamics and phase transitions of a charged diblock copolymer in water. J. Phys. Chem., B Condens. Mater. Surf. Interfaces Biophys. 109:3772–3779 (2005).Google Scholar
  34. 34.
    P. Dalhaimer, A. J. Engler, R. Parthasarathy, and D. E. Discher. Targeted worm micelles. Biomacromolecules. 5:1714–1719 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    S. D. Webb, J. A. Sherratt, and R. G. Fish. Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin. Exp. Metastasis. 17:397–407 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Vijayan, and D. E. Discher. Block copolymer worm micelles in dilution: mechanochemical metrics of robustness as a basis for novel linear assemblies. J. Polym. Sci., B, Polym. Phys. 44:3431–3433 (2006).CrossRefGoogle Scholar
  37. 37.
    L. Luo, J. Tam, D. Maysinger, and A. Eisenberg. Cellular internalization of poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymer micelles. Bioconjug. Chem. 13:1259–1265 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    P. Skoglund, and A. Fransson. Continuous cooling and isothermal crystallization of polycaprolactone. J. Appl. Polym. Sci. 61:2455–2465 (1996).CrossRefGoogle Scholar
  39. 39.
    V. Balsamo, C. U. de Navarro, and G. Gil. Microphase separation vs crystallization in polystyrene-b-polybutadiene-b-poly(epsilon-caprolactone) ABC triblock copolymers. Macromolecules 36:4507–4514 (2003).CrossRefGoogle Scholar
  40. 40.
    Y. Geng, D. E. Discher, J. Justynska, and H. Schlaad. Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): a platform for self-assembling hybrid amphiphiles. Angew. Chem., Int. Ed. Engl. 45:7578–7581 (2006).CrossRefGoogle Scholar
  41. 41.
    M. A. Hillmyerand, F. S. Bates. Synthesis and characterization of model polyalkane-poly(ethylene oxide) block copolymers. Macromolecules. 29:6994–7002 (1996).CrossRefGoogle Scholar
  42. 42.
    J. H. Kim, K. Emoto, M. Lijima, Y. Nagasaki, T. Aoyagi, T. Okano, Y. Sakurai, and K. Kataoka. Core-stabilized polymeric micelle as potential drug carrier: increased solubilization of taxol. Polym. Adv. Technol. 10:647–654 (1999).CrossRefGoogle Scholar
  43. 43.
    G. L. Li and J. X. Tang. Diffusion of actin filaments within a thin layer between two walls. Phys. Rev., E Stat. Nonlin. Soft Matter Phys. 69: Art. No. 061921 Part 1:(2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shenshen Cai
    • 1
  • Kandaswamy Vijayan
    • 1
  • Debbie Cheng
    • 1
  • Eliana M. Lima
    • 1
  • Dennis E. Discher
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Pennsylvania PhiladelphiaPennsylvaniaUSA

Personalised recommendations