Pharmaceutical Research

, Volume 24, Issue 11, pp 2131–2137 | Cite as

Protective Effect of Coenzyme Q10-loaded Liposomes on the Myocardium in Rabbits with an Acute Experimental Myocardial Infarction

  • Daya D. Verma
  • William C. Hartner
  • Vineet Thakkar
  • Tatyana S. Levchenko
  • Vladimir P. TorchilinEmail author
Research Paper



We assessed whether the infusion of Coenzyme Q10-loaded liposomes (CoQ10-L) in rabbits with an experimental myocardial infarction can result in increased intracellular delivery of CoQ10 and thus limit the fraction of the irreversibly damaged myocardium.


CoQ10-L, empty liposomes (EL), or Krebs–Henseleit (KH) buffer were administered by intracoronary infusion, followed by 30 min of occlusion and 3 h of reperfusion. Unisperse Blue dye was used to demarcate the net size of the occlusion-induced ischemic zone (“area at risk”) while nitroblue tetrazolium staining was used to detect the final fraction of the irreversibly damaged myocardium within the total area at risk.


The total size of the area at risk in all experimental animals was approx. 20% wt. of the left ventricle (LV). The final irreversible damage in CoQ10-L-treated animals was only ca. 30% of the total area at risk as compared with ca. 60% in the group treated with EL (p < 0.006) and ca. 70% in the KH buffer-treated group (p < 0.001).


CoQ10-L effectively protected the ischemic heart muscle by enhancing the intracellular delivery of CoQ10 in hypoxic cardiocytes in rabbits with an experimental myocardial infarction as evidenced by a significantly decreased fraction of the irreversibly damaged heart within the total area at risk. CoQ10-L may provide an effective exogenous source of the CoQ10 in vivo to protect ischemic cells

Key words

coenzyme Q10 experimental myocardial infarction liposomes 





Coenzyme Q10 liposomes


Detergent dialysis






Ethanol dissolution


Empty liposomes


Enhanced permeability and retention


Kreb sHenseleit


Low-density lipoprotein


Lipid film hydration


Left ventricle


Nitro blue tetrazolium


Egg phosphatidylcholine


1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]


Reverse phase evaporation


Unispearse blue dye



This study was supported by the NIH grant RO1 HL55519 to Vladimir P. Torchilin. The authors acknowledge the advice and support by Dr. B.-A. Khaw.


  1. 1.
    F. L. Crane, I. L. Sun, and E. E. Sun. The essential functions of coenzyme Q. Clin. Investig. 71:S55–S59 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Greenberg and W. H. Frishman. Co-enzyme Q10: a new drug for cardiovascular disease. J. Clin. Pharmacol. 30:596–608 (1990).PubMedGoogle Scholar
  3. 3.
    M. Sikorska, H. Borowy-Borowski, B. Zurakowski, and P. R. Walker. Derivatised alpha-tocopherol as a CoQ10 carrier in a novel water-soluble formulation. Biofactors 18:173–183 (2003).PubMedGoogle Scholar
  4. 4.
    B. Sarter. Coenzyme Q10 and cardiovascular disease: a review. J. Cardiovasc. Nurs. 16:9–20 (2002).PubMedGoogle Scholar
  5. 5.
    T. R. Kommuru, M. Ashraf, M. A. Khan, and I. K. Reddy. Stability and bioequivalence studies of two marketed formulations of coenzyme Q10 in beagle dogs. Chem. Pharm. Bull. (Tokyo) 47:1024–1028 (1999).Google Scholar
  6. 6.
    S. A. Mortensen. Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (ubiquinone). Clin. Investig. 71:S116–S123 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Ernster and G. Dallner. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta. 1271:195–204 (1995).PubMedGoogle Scholar
  8. 8.
    P. Forsmark-Andree and L. Ernster. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol. Aspects Med. 15(Suppl):s73–s81 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Sunamori, H. Tanaka, T. Maruyama, I. Sultan, T. Sakamoto, and A. Suzuki. Clinical experience of coenzyme Q10 to enhance intraoperative myocardial protection in coronary artery revascularization. Cardiovasc. Drugs Ther. 5(Suppl 2):297–300 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Ferrara, P. Abete, G. Ambrosio, P. Landino, P. Caccese, P. Cirillo, A. Oradei, G. P. Littarru, M. Chiariello, and F. Rengo. Protective role of chronic ubiquinone administration on acute cardiac oxidative stress. J. Pharmacol. Exp. Ther. 274:858–865 (1995).PubMedGoogle Scholar
  11. 11.
    R. Stocker, V. W. Bowry, and B. Frei. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. U. S. A. 88:1646–1650 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Folkers and R. Simonsen. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim. Biophys. Acta. 1271:281–286 (1995).PubMedGoogle Scholar
  13. 13.
    K. Folkers, T. Hanioka, L. J. Xia, J. T. McRee, Jr., and P. Langsjoen. Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS related complex. Biochem. Biophys. Res. Commun. 176:786–791 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Folkers. Heart failure is a dominant deficiency of coenzyme Q10 and challenges for future clinical research on CoQ10. Clin. Investig. 71:S51–S54 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Nakamura, M. Takahashi, J. Hayashi, H. Mori, S. Ogawa, Y. Tanabe, and K. Hara. Protection of ischaemic myocardium with coenzyme Q10. Cardiovasc. Res. 16:132–137 (1982).PubMedGoogle Scholar
  16. 16.
    W. G. Nayler. The use of Q10 to protect ischemic heart muscle. In Y. Yakamura and Y. Iti (eds.), Biomedical and Clinical Aspects of Coenzyme Q10, Vol. 2, Elsevier, Amsterdam, 1980, pp. 409–425.Google Scholar
  17. 17.
    T. Furuta, I. Kodama, N. Kondo, J. Toyama, and K. Yamada. A protective effect of coenzyme Q10 on isolated rabbit ventricular muscle under hypoxic condition. J. Cardiovasc. Pharmacol. 4:1062–1067 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Matsumoto, H. Matasunaga, M. Kawauchi, F. Miyawaki, and K.-I. Aano. Effect of coenzime Q10 pretreatmant on myocardial preservation. Heart Transplant. 3:160–165 (1984).Google Scholar
  19. 19.
    H. Matasunaga, H. Matsumoto, T. Yoshitake, and M. Saigusa. Protection cardiac muscle in surgery. In Y. Yamamura, K. Folkers, and Y. Ito (eds.), Biomedical and Clinical Aspects of Coenzyme Q10, Elsevier, Amsterdam, 1980, pp. 67–76.Google Scholar
  20. 20.
    F. Okamoto, B. S. Allen, G. D. Buckberg, J. Leaf, and H. Bugyi. Reperfusate composition: supplemental role of intravenous and intracoronary coenzyme Q10 in avoiding reperfusion damage. J. Thorac. Cardiovasc. Surg. 92:573–582 (1986).PubMedGoogle Scholar
  21. 21.
    H. Ohhara, H. Kanaide, and M. Nakamura. A protective effect of coenzyme Q10 on the adriamycin-induced cardiotoxicity in the isolated perfused rat heart. J. Mol. Cell. Cardiol. 13:741–752 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Konishi, Y. Nakamura, T. Konishi, and C. Kawai. Improvement in recovery of left ventricular function during reperfusion with coenzyme Q10 in isolated working rat heart. Cardiovasc. Res. 19:38–43 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Nagai, Y. Miyazaki, K. Ogawa, T. Satake, S. Sugiyama, and T. Ozawa. The effect of Coenzyme Q10 on reperfusion injury in canine myocardium. J. Mol. Cell Cardiol. 17:873–884 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. C. Chuang, J. Y. Chan, A. Y. Chang, M. Sikorska, H. Borowy-Borowski, C. W. Liou, and S. H. Chan. Neuroprotective effects of coenzyme Q10 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock 19:427–432 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. F. Chen, Y. T. Lin, and S. C. Wu. Effectiveness of coenzyme Q10 on myocardial preservation during hypothermic cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 107:242–247 (1994).PubMedGoogle Scholar
  26. 26.
    M. Chello, P. Mastroroberto, R. Romano, E. Bevacqua, D. Pantaleo, R. Ascione, A. R. Marchese, and N. Spampinato. Protection by coenzyme Q10 from myocardial reperfusion injury during coronary artery bypass grafting. Ann. Thorac. Surg. 58:1427–1432 (1994).PubMedCrossRefGoogle Scholar
  27. 27.
    W. V. Judy, W. W. Stogsdill, and K. Folkers. Myocardial preservation by therapy with coenzyme Q10 during heart surgery. Clin. Investig. 71:S155–S161 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Tanaka, R. Tominaga, M. Yoshitoshi, K. Matsui, M. Komori, A. Sese, H. Yasui, and K. Tokunaga. Coenzyme Q10: the prophylactic effect on low cardiac output following cardiac valve replacement. Ann. Thorac. Surg. 33:145–151 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    S.T. Sinatra. Refractory congestive heart failure successfully managed with high dose coenzyme Q10 administration. Mol. Aspects Med. 18(Suppl):S299–S305 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    E. M. Kurowska, G. Dresser, L. Deutsch, E. Bassoo, and D.J. Freeman. Relative bioavailability and antioxidant potential of two coenzyme q10 preparations. Ann. Nutr. Metab. 47:16–21 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    D.D. Lasic and D. Papahadjopoulos. Medical applications of liposomes, Elsevier, Amsterdam, 1998.Google Scholar
  32. 32.
    V. J. Caride and B. L. Zaret. Liposome accumulation in regions of experimental myocardial infarction. Science 198:735–738 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    T. N. Palmer, V. J. Caride, M. A. Caldecourt, J. Twickler, and V. Abdullah. The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta 797:363–368 (1984).PubMedGoogle Scholar
  34. 34.
    A. N. Lukyanov, W. C. Hartner, and V. P. Torchilin. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J. Control. Release 94:187–193 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Maeda. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    B. A. Khaw, V. P. Torchilin, I. Vural, and J. Narula. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nat. Med. 1:1195–1198 (1995).PubMedCrossRefGoogle Scholar
  38. 38.
    D. D. Verma, T. S. Levchenko, E. A. Bernstein, and V. P. Torchilin. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J. Control. Release 108:460–471 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    D. D. Verma, W. C. Hartner, T. S. Levchenko, E. A. Bernstein, and V. P. Torchilin. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm. Res. 22:2115–2120 (2005).PubMedCrossRefGoogle Scholar
  40. 40.
    F. Puisieux, E. Fattal, M. Lahiani, J. Auger, P. Jouannet, P. Couvreur, and J. Delattre. Liposomes, an interesting tool to deliver a bioenergetic substrate (ATP). In vitro and in vivo studies. J. Drug Target. 2:443–448 (1994).PubMedGoogle Scholar
  41. 41.
    H. Konno, A. F. Matin, Y. Maruo, S. Nakamura, and S. Baba. Liposomal ATP protects the liver from injury during shock. Eur. Surg. Res. 28:140–145 (1996).PubMedGoogle Scholar
  42. 42.
    Y. Y. Han, L. Huang, E. K. Jackson, R. K. Dubey, D. G. Gillepsie, and J. A. Carcillo. Liposomal atp or NAD+ protects human endothelial cells from energy failure in a cell culture model of sepsis. Res. Commun. Mol. Pathol. Pharmacol. 110:107–116 (2001).PubMedGoogle Scholar
  43. 43.
    K. Niibori, H. Yokoyama, J. A. Crestanello, and G. J. Whitman. Acute administration of liposomal coenzyme Q10 increases myocardial tissue levels and improves tolerance to ischemia reperfusion injury. J. Surg. Res. 79:141–145 (1998).PubMedCrossRefGoogle Scholar
  44. 44.
    K. Niibori, K. P. Wroblewski, H. Yokoyama, J. A. Crestanello, and G. J. Whitman. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors 9:307–313 (1999).PubMedGoogle Scholar
  45. 45.
    J. Dzierzkowska, A. Witanowska, G. Ciurzynska, M. Chciuk-Gornicka, M. Jozwicka, M. Gajewski, M. Kurenko-Deptuch, T. W. Deptuch, and S. Maslinski. The influence of intestinal ischaemia on energy balance in the myocardium during ischaemia–reperfusion induced cardiac injury in the rat. Inflamm. Res. 48(Suppl 1):S98–S99 (1999).PubMedCrossRefGoogle Scholar
  46. 46.
    J. A. Crestanello, N. M. Doliba, N. M. Doliba, A. M. Babsky, K. Niborii, M. D. Osbakken, and G. J. Whitman. Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. J. Surg. Res. 102:221–228 (2002).PubMedCrossRefGoogle Scholar
  47. 47.
    A. D. Bangham, M. M. Standish, and J. C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238–252 (1965).PubMedCrossRefGoogle Scholar
  48. 48.
    F. Szoka, Jr. and D. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. U. S. A. 75:4194–4198 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    W. Liang, T. S. Levchenko, and V. P. Torchilin. Encapsulation of ATP into liposomes by different methods: optimization of the procedure. J. Microencapsul. 21:251–261 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Birnbaum, S. L. Hale, and R. A. Kloner. The effect of coenzyme Q10 on infarct size in a rabbit model of ischemia/reperfusion. Cardiovasc. Res. 32:861–868 (1996).PubMedCrossRefGoogle Scholar
  51. 51.
    P. Mitchell. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56:1–6 (1975).PubMedCrossRefGoogle Scholar
  52. 52.
    J. A. Crestanello, J. Kamelgard, D. M. Lingle, S. A. Mortensen, M. Rhode, and G. J. Whitman. Elucidation of a tripartite mechanism underlying the improvement in cardiac tolerance to ischemia by coenzyme Q10 pretreatment. J. Thorac. Cardiovasc. Surg. 111:443–450 (1996).PubMedCrossRefGoogle Scholar
  53. 53.
    F. Yamamoto, H. Yamamoto, S. Yoshida, H. Ichikawa, A. Takahashi, K. Tanaka, Y. Kosakai, T. Yagihara, and T. Fujita. The effects of several pharmacologic agents upon postischemic recovery. Cardiovasc. Drugs Ther. 5(Suppl 2):301–308 (1991).PubMedCrossRefGoogle Scholar
  54. 54.
    N. A. Choudhury, S. Sakaguchi, K. Koyano, A. F. Matin, and H. Muro. Free radical injury in skeletal muscle ischemia and reperfusion. J. Surg. Res. 51:392–398 (1991).PubMedCrossRefGoogle Scholar
  55. 55.
    S. Chapat, V. Frey, N. Claperon, C. Bouchaud, F. Puisieux, P. Couvreur, P. Rossignol, and J. Delattre. Efficiency of liposomal ATP in cerebral ischemia: bioavailability features. Brain Res. Bull. 26:339–342 (1991).PubMedCrossRefGoogle Scholar
  56. 56.
    A. Laham, N. Claperon, J. J. Durussel, E. Fattal, J. Delattre, F. Puisieux, P. Couvreur, and P. Rossignol. Intracarotidal administration of liposomally-entrapped ATP: improved efficiency against experimental brain ischemia. Pharmacol. Res. Commun. 20:699–705 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    F. Mixich and S. Mihailescu. Liposome microcapsules; an experimental model for drug transport across the Blood–Brain Barrier (BBB). In B. de Boer and W. Sutanto (eds.), Drug Transport Across the Blood–Brain Barrier, Harwood, GMBH, Amsterdam, 1997, pp. 201–213.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daya D. Verma
    • 1
    • 2
  • William C. Hartner
    • 1
  • Vineet Thakkar
    • 1
  • Tatyana S. Levchenko
    • 1
  • Vladimir P. Torchilin
    • 1
    Email author
  1. 1.Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA
  2. 2.Novartis Pharmaceuticals CorporationEast HanoverUSA

Personalised recommendations