Advertisement

Pharmaceutical Research

, Volume 24, Issue 10, pp 1954–1961 | Cite as

High Sensitivity Differential Scanning Calorimetry Study of DNA-Cationic Liposome Complexes

  • Mark Saunders
  • Kevin M. G. TaylorEmail author
  • Duncan Q. M. Craig
  • Karen Palin
  • Hazel Robson
Research Paper

Abstract

Purpose

To investigate plasmid DNA interactions with liposomes prepared from dimyristoylglyceroethylphosphocholine (EDMPC) and DOPE using high sensitivity differential scanning calorimetry (HSDSC).

Materials and Methods

Large unilamellar liposomes of EDMPC with DOPE (mol ratio 0–50%) were prepared. Plasmid DNA was added to give a final DNA/lipid (−/+) charge ratio of 0.5. Samples were placed into an HSDSC and cooled to 3°C, held isothermally for 30 min and then the temperature was ramped to 120°C at a rate of 1°C/min.

Results

On heating EDMPC liposomes, the main phase transition occurred at 21.2°C, with a low temperature shoulder on the endothermic peak. At low DOPE concentrations the main phase transition temperatures and enthalpies of transition were lower than for pure EDMPC, with a peak corresponding to a pure EDMPC phase occurring at DOPE concentrations of 12–17 mol%. At 50 mol%, no main transition endotherm was observed. DNA solution produced two endothermic peaks with numerous ‘satellite’ peaks indicating thermal denaturation. DNA binding to EDMPC changed the shape of the thermogram, indicating alteration in lipid packing within the bilayer. DNA induced demixing in the bilayers of DOPE-containing liposomes.

Conclusion

HSDSC provided information for characterizing liposome formulations and DNA interactions with such vesicles.

Key words

calorimetry cationic DNA liposome phospholipid 

Notes

Acknowledgement

We wish to thank GlaxoSmithKline Research and Development for their financial support for this project.

References

  1. 1.
    G. Gregoriadis and A. T. Florence. Liposomes in drug delivery. Drugs 45:16–27 (1993).Google Scholar
  2. 2.
    J. P. Vigneron, N. Oudrhiri, M. Fauqet, L. Vergely, J. C. Bradley, M. Basseville, P. Lehn and J. M. Lehn. Guanidium-cholesterol cationic lipids; efficient vectors for the transfection of eukaryotic cells. Proc. Natl. Acad. Sci. U. S. A. 93:9682–9686 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    J. P. Behr. DNA strongly binds micelles and vesicles containing lipopolyamides or lipointercalants. Tetrahedron Lett. 27:5861–5864 (1986).CrossRefGoogle Scholar
  4. 4.
    M. Maccarrone, L. Dini, L. Marzio, A. Giulio, A. Rossi, G. Mossa and A. F. Agro. Interaction of DNA with cationic liposomes: ability of transfecting lentil protoplasts. Biochem. Biophys. Res. Commun. 186:1417–1422 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Huebner, B. J. Battersby, R. Grimm, and G. Cevc. Lipid-DNA complex formation: Reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys. J. 76:3158–3166 (1999).PubMedGoogle Scholar
  6. 6.
    B. Sternberg, F. L. Sorg, and L. Huang. New structures in the complex formation between DNA and cationic liposomes visualised by freeze fracture electron microscopy. FEBS Lett. 356: 361–366 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    N. S. Templeton, D. D. Lasic, P. M. Frederik, H. Strey, D. D. Roberts, and G. N. Pavlakis. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15:647–652 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Sternberg, K. Hong, W. Zheng, and D. Papahadjopoulos. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim. Biophys. Acta 1375:23–35 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    D. D. Lasic, H. Strey, M. C. A. Stuart, R. Podgornik, and P. M. Frederick. The structure of DNA-liposome complexes. J. Am. Chem. Soc. 119:832–833 (1997).CrossRefGoogle Scholar
  10. 10.
    Y. S. Tarahovsky, V. A. Rakhmanova, R. M. Epand, and R. C. MacDonald. High temperature stabilization of DNA in complexes with cationic lipids. Biophys. J. 82:264–273 (2002).PubMedGoogle Scholar
  11. 11.
    B. Sternberg. Morphology of cationic liposome/DNA complexes in relation to their chemical composition. J. Liposome Res. 6:515–533 (1996).Google Scholar
  12. 12.
    J. B. Battersby, R. Grimm, S. Huebner, and G. Cevc. Evidence for three-dimensional interlayer correlations in cationic lipid-DNA complexes as observed by cryo-electron microscopy. Biochim. Biophys. Acta 1372:379–383 (1998).PubMedCrossRefGoogle Scholar
  13. 13.
    K. M. G. Taylor and R. M. Morris. Thermal analysis of phase transition behaviour in liposomes. Thermochem. Acta 248:289–301 (1995).CrossRefGoogle Scholar
  14. 14.
    M. K. Jain, and N. M. Wu. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III Phase transition in lipid bilayer. J. Membr. Biol. 34:157–201 (1977).CrossRefGoogle Scholar
  15. 15.
    M. Subramanian, J. M. Holopainen, T. Paukku, O. Eriksson, I. Huhtaniemi, and P. K. J. Kinnunen. Characterisation of three novel cationic lipids as liposomal complexes with DNA. Biochem. Biophys. Acta 1466:289–305 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    P. C. A. Barreleiro, G. Olofsson, and P. Alexandridis. Interaction of DNA with cationic vesicles. J. Phys. Chem., B. 104:7795–7802 (2000).CrossRefGoogle Scholar
  17. 17.
    B. A. Lobo, A. Davis, G. Koe, J. G. Smith, and C. R. Middaugh. Isothermal titration calorimetric analysis between cationic lipids and plasmid DNA. Arch. Biochem. Biophys. 386:95–105 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    A. D. Bangham, M. M Standish, and J. C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipid. J. Mol. Biol. 13:238–253 (1965).PubMedGoogle Scholar
  19. 19.
    K. M. G. Taylor and D. Q. M. Craig. Thermal analysis of liposomes. In V. Weissig and V. P. Torchilin (eds.), Liposomes: A Practical Approach, 2nd edition, Oxford University Press, Oxford, 2003, pp. 79–103.Google Scholar
  20. 20.
    I. Winter, G. Pabst, M. Rappolt, and K. Lohner. Refined structure of 1,2-diacyl-P-O-ethylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 112:137–150 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    J. F. Nagle and S. Tristram-Nagle. Structure of lipid bilayers. Biochim. Biophys. Acta 1469:159–195 (2000).PubMedGoogle Scholar
  22. 22.
    R. N. A. H. Lewis, I. Winter, M. Kriechbaum, K. Lohner, and R. N. McElhaney. Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic and X-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines. Biophys. J. 80:1329–1342 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Ellens, J Bentz, and F. C. Szoka. pH induced destabilization of phosphatidylethanolamine-containing liposomes: Role of bilayer contact. Biochemistry 23:1532–1538 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    S. W. W. Yen, and R. D. Blake. Analysis of high-resolution thermal dispersion profiles of DNA: Treatment as a collection of discrete subtransitions. Biopolymers 20:1161–1181 (1981).CrossRefGoogle Scholar
  25. 25.
    G. M. Mrevlishvili, M. J. Sottomayor, M. A. V. Ribeiro da Silva, T. D. Mdzinarashvili, M. Al-Zaza, M. Tediashvili, D. Tushishvili, and N. Chanishvili. Differential scanning calorimetry and hydrodynamic study of bacterial viruses; about possible heat effects in hermetically closed calorimetric vessels with free volume above the liquid. J. Therm. Anal. Calorim. 66:115–121 (2001).CrossRefGoogle Scholar
  26. 26.
    R. Zantl, L. Baicu, F. Artzner, I. Sprenger, G. Rapp, and J. Rädler. Thermotropic phase behaviour of cationic lipid-DNA complexes compared to binary lipid mixtures. J. Phys. Chem., B. 103:10300–10310 (1999).CrossRefGoogle Scholar
  27. 27.
    S. May, D. Harries, and A. Ben-Shaul. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. Biophys. J. 79:1747–1760 (2000).PubMedGoogle Scholar
  28. 28.
    E. Haleva, N. Ben-Tal, and H. Diamant. Increased concentration of polyvalent phospholipids in the adsorption domain of a charged protein. Biophys. J. 86:2165–2178 (2004).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mark Saunders
    • 1
  • Kevin M. G. Taylor
    • 1
    Email author
  • Duncan Q. M. Craig
    • 2
  • Karen Palin
    • 3
  • Hazel Robson
    • 3
  1. 1.School of PharmacyUniversity of LondonLondonUK
  2. 2.The School of PharmacyUniversity of East AngliaNorwichUK
  3. 3.BioPharmaceutical Formulation SciencesGlaxoSmithKline Research and DevelopmentWare, HertfordshireUK

Personalised recommendations