Pharmaceutical Research

, Volume 24, Issue 9, pp 1772–1787

Blood–brain Barrier Transport of Non-viral Gene and RNAi Therapeutics

Research Paper

Abstract

The development of gene- and RNA interference (RNAi)-based therapeutics represents a challenge for the drug delivery field. The global brain distribution of DNA genes, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, i.e. viruses, have poor diffusion in brain when injected in situ and do not cross the blood–brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Recent advances in the “Trojan Horse Liposome” (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the DNA/RNAi delivery obstacle. The THL is comprised of immunoliposomes carrying either a gene for protein replacement or small hairpin RNA (shRNA) expression plasmids for RNAi effect, respectively. The THL is engineered with known lipids containing polyethyleneglycol (PEG), which stabilizes its structure in vivo in circulation. The tissue target specificity of THL is given by conjugation of ∼1% of the PEG residues to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors (i.e. insulin and transferrin receptors) located on both the BBB and the brain cellular membranes, respectively. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The present review presents an overview of the THL technology and its current application to gene therapy and RNAi, including experimental models of Parkinson’s disease and brain tumors.

Key words

blood–brain barrier brain drug delivery gene therapy liposomes RNAi 

References

  1. 1.
    K. W. Mok, A. M. Lam, and P. R. Cullis. Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta 1419:137–150 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    N. Shi, and W. M. Pardridge. Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. U. S. A 97:7567–7572 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    W. M. Pardridge. Drug and gene delivery to the brain: the vascular route. Neuron. 36:555–558 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    A. P. Byrnes, J. E. Rusby, M. J. Wood, and H. M. Charlton. Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66:1015–1024 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    M. J. Wood, H. M. Charlton, K. J. Wood, K. Kajiwara, and A. P. Byrnes. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci. 19:497–501 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    J. G. Smith, S. E. Raper, E. B. Wheeldon, D. Hackney, K. Judy, J. M. Wilson, and S. L. Eck. Intracranial administration of adenovirus expressing HSV-TK in combination with ganciclovir produces a dose-dependent, self-limiting inflammatory response. Hum. Gene Ther. 8:943–954 (1997).PubMedGoogle Scholar
  7. 7.
    M. J. Driesse, A. J. Vincent, P. A. Sillevis Smitt, J. M. Kros, P. M. Hoogerbrugge, C. J. Avezaat, D. Valerio, and A. Bout. Intracerebral injection of adenovirus harboring the HSVtk gene combined with ganciclovir administration: toxicity study in nonhuman primates. Gene Ther. 5:1122–1129 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    U. Herrlinger, C. M. Kramm, K. S. Aboody-Guterman, J. S. Silver, K. Ikeda, K. M. Johnston, P. A. Pechan, R. F. Barth, D. Finkelstein, E. A. Chiocca, D. N. Louis, and X. O. Breakefield. Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther. 5:809–819 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    M. M. McMenamin, A. P. Byrnes, H. M. Charlton, R. S. Coffin, D. S. Latchman, and M. J. Wood. A gamma34.5 mutant of herpes simplex 1 causes severe inflammation in the brain. Neuroscience 83:1225–1237 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    R. A. Dewey, G. Morrissey, C. M. Cowsill, D. Stone, F. Bolognani, N. J. Dodd, T. D. Southgate, D. Klatzmann, H. Lassmann, M. G. Castro, and P. R. Lowenstein. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirusmediated gene therapy: implications for clinical trials. Nat. Med. 5:1256–1263 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    M. S. Lawrence, H. G. Foellmer, J. D. Elsworth, J. H. Kim, C. Leranth, D. A. Kozlowski, A. L. Bothwell, B. L. Davidson, M. C. Bohn, and D. E. Redmond, Jr. Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther. 6:1368–1379 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Stallwood, K. D. Fisher, P. H. Gallimore, and V. Mautner. Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Ther. 7:637–643 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    M. J. Driesse, M. C. Esandi, J. M. Kros, C. J. Avezaat, C. Vecht, C. Zurcher, I. Van der Velde, D. Valerio, A. Bout, and P. A. Sillevis Smitt. Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Ther. 7:1401–1409 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Kajiwara, A. P. Byrnes, Y. Ohmoto, H. M. Charlton, M. J. Wood, and K. J. Wood. Humoral immune responses to adenovirus vectors in the brain. J. Neuroimmunol. 103:8–15 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Matsui, L. G. Johnson, S. H. Randell, and R. C. Boucher. Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J. Biol. Chem. 272:1117–1126 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    L. G. Barron, L. S. Uyechi, and F. C. Szoka, Jr. Cationic lipids are essential for gene delivery mediated by intravenous administration of lipoplexes. Gene Ther. 6:1179–1183 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Osaka, K. Carey, A. Cuthbertson, P. Godowski, T. Patapoff, A. Ryan, T. Gadek, and J. Mordenti. Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [33P]DNA following intravenous administration of DNA/cationic lipid complexes in mice: use of a novel radionuclide approach. J. Pharm. Sci. 85:612–618 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    N. Shi, R. J. Boado, and W. M. Pardridge. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18:1091–1095 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U.S.A. 98:12754–12759 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. Zhang, F. Calon, C. Zhu, R. J. Boado, and W. M. Pardridge. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum. Gene Ther. 14:1–12 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, and W. M. Pardridge. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. U. S. A. 88:11460–11464 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Gabizon, D. Papahadjopoulos. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. U.S.A. 85:6949–6953 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, F. Schlachetzki, and W. M. Pardridge. Global non-viral gene transfer to the primate brain following intravenous administration. Molec. Ther. 7:11–17 (2003).CrossRefGoogle Scholar
  25. 25.
    F. Schlachetzki, Y. Zhang, R. J. Boado, and W. M. Pardridge. Gene therapy of the brain: the trans-vascular approach. Neurology. 62:1275–1281 (2004)PubMedGoogle Scholar
  26. 26.
    M. J. Coloma, H. J. Lee, A. Kurihara, E. M. Landaw, R. J. Boado, S. L. Morrison, and W. M. Pardridge. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm. Res. 17:266–274 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    R. J. Boado, Y-F. Zhang, Y. Zhang, and W. M. Pardridge. Humanization of antihuman insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol. Bioeng. 96:381–391 (2007).PubMedCrossRefGoogle Scholar
  28. 28.
    W. M. Pardridge. Gene targeting in vivo with pegylated immunoliposomes. Methods Enzymol. 373:507–528 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Gabizon. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin. Cancer Res. 7:223–225 (2001).PubMedGoogle Scholar
  30. 30.
    Y. Zhang, H. Jeong Lee, R. J. Boado, and W. M. Pardridge. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J. Gene Med. 4:183–194 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, R. J. Boado, and W. M. Pardridge. Marked enhancement in gene expression by targeting the human insulin receptor. J. Gene Med. 5:157–163 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Zhang, R. J. Boado, and W. M. Pardridge. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med. 5:1039–1045 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, F. Schlachetzki, Y. F. Zhang, R. J. Boado, and W. M. Pardridge. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism with intravenous nonviral gene therapy and brainspecific promoter. Hum. Gene Ther. 15:339–350 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    D. A. Jans. Nuclear signaling pathways for polypeptides ligands and their membrane receptors. FASEB J. 8:841–847 (1994).PubMedGoogle Scholar
  35. 35.
    D. He, W. Casscells, D. A. Engler. Nuclear accumulation of exogenous DNA fragments in viable cells mediated by FGF-2 and DNA release upon cellular injury. Exp. Cell Res. 265:31–45 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    K. M. Haan, A. Aiyar, R. Longnecker. Establishment of latent Epstein–Barr virus infection and stable episomal maintenance in urine B-cell lines. J. Virol. 75:3016–3020 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Makrides. Components of vectors for gene transfer and expression in mammalian cells. Protein Exp. Purif. 17:181–202 (1999).Google Scholar
  38. 38.
    R. J. Boado, and W. M. Pardridge. Ten nucleotide cis element in the 3′-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Mol. Brain Res. 59:109–113 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    R. J. Boado, W. M. Pardridge. Amplification of gene expression using both 5’- and 3’-untranslated regions of GLUT1 glucose transporter mRNA. Mol. Brain Res. 63:371–374 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Chu, Y. Zhang, R. J. Boado, and W. M. Pardridge. Decline in exogenous gene expression in primate brain following intravenous administration is due to plasmid degradation. Pharm. Res. 23:1586–1590 (2006).PubMedCrossRefGoogle Scholar
  41. 41.
    Y. Zhang, F. Schlachetzki, J. Y. Li, R. J. Boado, W. M. Pardridge. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol. Vis. 9:465–472 (2003).PubMedGoogle Scholar
  42. 42.
    M. M. Mouradian, and T. N. Chase. Gene therapy for Parkinson’s disease: an approach to the prevention or palliation of levodopa-associated motor complications. Exp. Neurol. 144:51–57 (1997).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Mandil, E. Ashkenazi, M. Blass, I. Kronfeld, G. Kazimirsky, G. Rosenthal, F. Umansky, P. S. Lorenzo, P. M. Blumberg, and C. Brodie. Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 61:4612–4619 (2001).PubMedGoogle Scholar
  44. 44.
    I. Nagatsu, H. Ichinose, M. Sakai, K. Titani, M. Suzuki, and T. Nagatsu. Immunocytochemical localization of GTP cyclohydrolase I in the brain, adrenal gland, and liver of mice. J. Neural. Transm. Gen. Sect. 102:175–188 (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    O. Hwang, H. Baker, S. Gross, and T. H. Joh. Localization of GTP cyclohydrolase in monoaminergic but not nitric oxide-producing cells. Synapse. 28:140–153 (1998).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Shimoji, K. Hirayama, K. Hyland, and G. Kapatos. GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J. Neurochem. 72:757–764 (1999).PubMedCrossRefGoogle Scholar
  47. 47.
    I. Nagatsu, R. Arai, M. Sakai, Y. Yamawaki, T. Takeuchi, N. Karasawa, and T. Nagatsu. Immunohistochemical colocalization of GTP cyclohydrolase I in the nigrostriatal system with tyrosine hydroxylase. Neurosci Lett. 224:185–188 (1997).PubMedCrossRefGoogle Scholar
  48. 48.
    N. Kaneda, T. Sasaoka, K. Kobayashi, K. Kiuchi, I. Nagatsu, Y. Kurosawa, K. Fujita, M. Yokoyama, T. Nomura, M. Katsuki, and et al. Tissue-specific and highlevel expression of the human tyrosine hydroxylase gene in transgenic mice. Neuron. 6:583–594 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    N. Min, T. H. Joh, K. S. Kim, C. Peng, and J. H. Son. 5’ upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Mol. Brain Res. 27:281–289 (1994).PubMedCrossRefGoogle Scholar
  50. 50.
    M. McManus, and P. Sharp. Gene silencing in mammals by small interfering RNAs. Genetics. 3:737–747 (2002).PubMedGoogle Scholar
  51. 51.
    J. Couzin. Breakthrough of the year. Small RNAs make a big splash. Science. 298:2296–2297 (2002).PubMedCrossRefGoogle Scholar
  52. 52.
    P. Paddison, A. Caudy, E. Bernstein, G. Hannon, and D. Conklin. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16:948–958 (2002).PubMedCrossRefGoogle Scholar
  53. 53.
    G. Sui, C. Soohoo, E. Affar, F. Gay, Y. Shi, W. C. Forrester, and Y. Shi. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99:5515–5520 (2002).PubMedCrossRefGoogle Scholar
  54. 54.
    S. M. Elbashir, J. Harborth, K. Weber, and T. Tuschl. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 26:199–213 (2002).PubMedCrossRefGoogle Scholar
  55. 55.
    T. R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553 (2002).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Abbas-Terki, W. Blanco-Bose, N. Deglon, W. Pralong, and P. Aebischer. Lentiviral-mediated RNA interference. Hum. Gene Ther. 13:2197–2201 (2002).PubMedCrossRefGoogle Scholar
  57. 57.
    R. J. Boado. RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx. 2:139–150 (2005).PubMedCrossRefGoogle Scholar
  58. 58.
    D. Yao, D. Jiang, Z. Huang, J. Lu, Q. Tao, Z. Yu, and X. Meng. Abnormal expression of hepatoma and alteration of gamma-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma. Cancer. 88:761–769 (2000).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Morgenstern, O. Hanson-Painton, B. Wang, and L. De Bault. Densitydependent regulation of cell surface gamma-glutamyl transpeptidase in cultured glial cells. J. Cell Physiol. 150:104–115 (1992).PubMedCrossRefGoogle Scholar
  60. 60.
    M. T. McManus, and P. A. Sharp. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3:737–747 (2002).PubMedCrossRefGoogle Scholar
  61. 61.
    J. Y. Yu, J. Taylor, S. L. DeRuiter, A. B. Vojtek, and D. L. Turner. Simultaneous inhibition of GSK3. and GSK3. using hairpin siRNA expression vectors. Molec. Ther. 7:228–236 (2003).CrossRefGoogle Scholar
  62. 62.
    Y. Zhang, C. Zhu, and W. M. Pardridge. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Molec. Ther. 6:67–72 (2002).CrossRefGoogle Scholar
  63. 63.
    J. A. Ewald, K. J. Coker, J. O. Price, J. V. Staros, C. A. Guyer. Stimulation of mitogenic pathways through kinase-impaired mutants of the epidermal growth factor receptor. Exp. Cell Res. 268:262–273 (2001).PubMedCrossRefGoogle Scholar
  64. 64.
    M. Hernandez, M. J. Barrero, M. S. Crespo, and M. L. Nieto. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase Cγ and a Gαi protein. J. Neurochem. 75:1575–1582 (2000).PubMedCrossRefGoogle Scholar
  65. 65.
    Abe T, Terada K, Wakimoto H, Inoue R, Tyminski E, et al. PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res. 63:2300–2305 (2003).PubMedGoogle Scholar
  66. 66.
    A. B. Heimberger, C. A. Learn, G. E. Archer, R. E. McLendon, T. A. Chewning, F. L. Tuck, J. B. Pracyk, A. H. Friedman, H. S. Friedman, D. D. Bigner, and J. H. Sampson. Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (iressa). Clin. Cancer Res. 8:3496–3502 (2002).PubMedGoogle Scholar
  67. 67.
    J. G. Paez, P. A. Janne, J. C. Lee, S. Tracy, H. Greulich, S. Gabriel, P. Herman, F. J. Kaye, N. Lindeman, T. J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M. J. Eck, W. R. Sellers, B. E. Johnson, and M. Meyerson. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500 (2004).PubMedCrossRefGoogle Scholar
  68. 68.
    T. J. Lynch, D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B. W. Brannigan, P. L. Harris, S. M. Haserlat, J. G. Supko, F. G. Haluska, D. N. Louis, D. C. Christiani, J. Settleman, and D. A. Haber. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:2129–2139 (2004).PubMedCrossRefGoogle Scholar
  69. 69.
    R. B. Luwor, T. G. Johns, C. Murone, H. J. Huang, W. K. Cavenee, G. Ritter, L. G. Old, A. W. Burgess, and A. M. Scott. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res. 61:5355–5361 (2001).PubMedGoogle Scholar
  70. 70.
    A. Lal, C. A. Glazer, H. M. Martinson, H. S. Friedman, G. E. Archer, J. H. Sampson, and G. J. Riggins. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 62:3335–3339 (2002).PubMedGoogle Scholar
  71. 71.
    X. Luo, X. Gong, and C. K. Tang. Suppression of EGFRvIII-mediated proliferation and tumorigenesis of breast cancer cells by ribozyme. Int. J. Cancer. 104:716–721 (2003).PubMedCrossRefGoogle Scholar
  72. 72.
    V. M. Miller, C. M. Gouvion, B. L. Davidson, and H. L. Paulson. Targeting Alzheimer’s disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 32:661–668 (2004).PubMedCrossRefGoogle Scholar
  73. 73.
    C-F. Xia, C. Chu, J. Li, Y. Wang, Y. Zhang, R. J. Boado, and W. M. Pardridge. Comparison of cDNA and genomic forms of tyrosine hydroxylase gene therapy of the brain with Trojan horse liposomes. J. Gene Med. (2007) (in press).Google Scholar
  74. 74.
    Y-F. Zhang, R. J. Boado, and W. M. Pardridge. Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm. Res. 20:1779–1785 (2003).PubMedCrossRefGoogle Scholar
  75. 75.
    Z. Izsvak, Z. Ivics, and R. H. Plasterk. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302:93–102 (2000).PubMedCrossRefGoogle Scholar
  76. 76.
    A. J. Thrasher, H. B. Gaspar, C. Baum, U. Modlich, A. Schambach, F. Candotti, M. Otsu, B. Sorrentino, L. Scobie, E. Cameron, K. Blyth, J. Neil, S. H. Abina, M. Cavazzana-Calvo, A. Fischer. Gene therapy: X-SCID transgene leukaemogenicity. Nature 440:1123 (2006).CrossRefGoogle Scholar
  77. 77.
    W. M. Pardridge, J. L. Buciak, and P. M. Friden. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:66–70 (1991).Google Scholar
  78. 78.
    J. H. Lee, B. Engelhardt, J. Lesley, U. Bickel, and W. M. Pardridge. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J. Pharmacol. Exp. Ther. 292:1048–1052 (2000).Google Scholar
  79. 79.
    W. M. Padridge, Y. S. Kang, J. L. Buciak, and J. Yang. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12:807–816 (1995).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MedicineUCLA Warren Hall 13-164Los AngelesUSA

Personalised recommendations