Pharmaceutical Research

, Volume 24, Issue 7, pp 1360–1368

Transdermal Delivery of Cytochrome C—A 12.4 kDa Protein—Across Intact Skin by Constant–Current Iontophoresis

  • J. Cázares-Delgadillo
  • A. Naik
  • A. Ganem-Rondero
  • D. Quintanar-Guerrero
  • Y. N. Kalia
Research Paper



To demonstrate the transdermal iontophoretic delivery of a small (12.4 kDa) protein across intact skin.

Materials and Methods

The iontophoretic transport of Cytochrome c (Cyt c) across porcine ear skin in vitro was investigated and quantified by HPLC. The effect of protein concentration (0.35 and 0.7 mM), current density (0.15, 0.3 or 0.5−2 applied for 8 h) and competing ions was evaluated. Co-iontophoresis of acetaminophen was employed to quantify the respective contributions of electromigration (EM) and electroosmosis (EO).


The data confirmed the transdermal iontophoretic delivery of intact Cyt c. Electromigration was the principal transport mechanism, accounting for ∼90% of delivery; correlation between EM flux and electrophoretic mobility was consistent with earlier results using small molecules. Modest EO inhibition was observed at 0.5−2. Cumulative permeation at 0.3 and 0.5−2 was significantly greater than that at 0.15−2; fluxes using 0.35 and 0.7 mM Cyt c in the absence of competing ions (Jtot = 182.8 ± 56.8 and 265.2 ± 149.1 μ−2.h−1, respectively) were statistically equivalent. Formulation in PBS (pH 8.2) confirmed the impact of competing charge carriers; inclusion of ∼170 mM Na+ resulted in a 3.9-fold decrease in total flux.


Significant amounts (∼0.9−2 over 8 h) of Cyt c were delivered non-invasively across intact skin by transdermal electrotransport.

Key words

cytochrome c electromigration iontophoresis protein delivery skin permeation 




Cyt c

cytochrome c


capillary zone electrophoresis





JEM, Cyt c

flux due to electromigration of Cyt c

JEO, Cyt c

flux due to electroosmosis of Cyt c

Jtot, Cyt c

total steady-state flux of Cyt c


convective solvent flow


  1. 1.
    Y. B. Schuetz, P-A. Carrupt, A. Naik, R. H. Guy, and Y. N. Kalia. Structure-permeation relationships for the non-invasive transdermal delivery of cationic peptides by iontophoresis. Eur. J. Pharm. Sci. 29:53–59 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    R. R. Burnette. Iontophoresis. In J. Hadgraft and R. Guy (eds.), Transdermal Drug Delivery, Marcel Dekker, New York, 1989, pp. 247–288.Google Scholar
  3. 3.
    Y. N. Kalia, A. Naik, J. Garrison, and R. H. Guy. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619–658 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    M. C. Heit, P. L. Williams, F. L. Jayes, S. K. Chang, and J. E. Riviere. Transdermal iontophoretic peptide delivery: in vitro and in vivo studies with luteinizing hormone releasing hormone. J. Pharm. Sci. 82:240–243 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Raiman, M. Koljonen, K. Huikko, R. Kostiainen, and J. Hirvonen. Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. Eur. J. Pharm. Sci. 21:371–377 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Santi, N. M. Volpato, R. Bettini, P. L. Catellani, G. Massimo, and P. Colombo. Transdermal iontophoresis of salmon calcitonin can reproduce the hypocalcemic effect of intravenous administration. Farmaco 52:445–448 (1997).PubMedGoogle Scholar
  7. 7.
    A. Chaturvedula, D. P. Joshi, C. Anderson, R. L. Morris, W. L. Sembrowich, and A. K. Banga. In vivo iontophoretic delivery and pharmacokinetics of salmon calcitonin. Int. J. Pharm. 297:190–196 (2005).PubMedGoogle Scholar
  8. 8.
    S. Kumar, H. Char, S. Patel, D. Piemontese, A. W. Malick, K. Iqbal, E. Neugroschel, and Ch. R. Behl. Effect of iontophoresis on in vitro skin permeation of an analog of growth hormone releasing factor in the hairless guinea pig model. J. Pharm. Sci. 81:635–639 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Suzuki, K. Iga, Sh. Yanai, Y. Matsumoto, M. Kawase, T. Fukuda, H. Adachi, N. Higo, and Y. Ogawa. Iontophoretic pulsatile transdermal delivery of human parathyroid hormone (1–34). J. Pharm. Pharmacol. 53:1227–1234 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Langkjaer, J. Brange, G. M. Grodsky, and R. H. Guy. Iontophoresis of monomeric insulin analogs in vitro: effects of insulin charge and skin pretreatment. J. Control. Release 51:47–56 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    O. Pillai and R. Panchagnula. Transdermal iontophoresis of insulin: V. Effect of terpenes. J. Control. Release 88:287–296 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    N. G. Turner, L. Ferry, M. Price, C. Cullander, and R. H. Guy. Iontophoresis of poly-L-lysines: the role of molecular weight? Pharm. Res. 14:1322–1331 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Haak and S. K. Gupta. Pulsatile drug delivery from electrotransport therapeutic systems. In R. Gurny, H. E. Junginger, and N. A. Peppas (eds.), Pulsatile Drug Delivery—Current Applications and Future Trends, Wiss, Verl.-Ges., Stuttgart, 1993, pp. 99–112.Google Scholar
  14. 14.
    P. Green. Iontophoretic delivery of peptide drugs. J. Control. Release 41:33–48 (1996).CrossRefGoogle Scholar
  15. 15.
    M. B. Delgado-Charro and R. H. Guy. Iontophoresis of peptides. In Bret Berner and S. M. Dinh (eds.), Electronically Controlled Drug Delivery, Vol. 1, CRS, New York, 1998, pp. 129–157.Google Scholar
  16. 16.
    R. H. Guy, Y. N. Kalia, M. B. Delgado-Charro, V. Merino, A. López, and D. Marro. Iontophoresis: electrorepulsion and electroosmosis. J. Control. Release 64:129–132 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    N. Abla, A. Naik, R. H. Guy, and Y. N. Kalia. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm. Res. 22:2069–2078 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    N. Abla, L. Geiser, M. Mirgaldi, A. Naik, J.-L. Veuthey, R. H. Guy, and Y. N. Kalia. Capillary zone electrophoresis for the estimation of transdermal iontophoretic mobility. J. Pharm. Sci. 94:2667–2675 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    G. W. Bushnell, G. V. Louie, and G. D. Brayer. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214:585–595 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    Y. B. Schuetz, A. Naik, R. H. Guy, E. Vuaridel, and Y. N. Kalia. Transdermal iontophoretic delivery of vapreotide acetate across porcine skin in vitro. Pharm. Res. 22:1305–1312 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    M. J. Picklo, J. Zhang, V. Q. Nguyen, D. G. Graham, and T. J. Montine. High pressure liquid chromatography quantitation of Cytochrome c using 393 nm detection. Anal. Biochem. 276:166–170 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    N. Abla, A. Naik, R. H. Guy, and Y. N. Kalia. Contributions of electromigration and electroosmosis to peptide iontophoresis across intact and impaired skin. J. Control. Release 108:319–330 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    J. E. De Muth. Basic Statistics and Pharmaceutical Statistical Applications, Marcel Dekker, New York, 1999.Google Scholar
  24. 24.
    D. T. W. Lau, J. W. Sharkey, L. Petryk, F. A. Mancuso, Z. Yu, and F. L. S. Tse. Effect of current magnitude and drug concentration on iontophoretic delivery of octreotide acetate (Sandostatin®) in the rabbit. Pharm. Res. 11:1742–1746 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    S. K. Gupta, M. Southam, G. Sathyan, and M. Klausner. Effect of current density on pharmacokinetics following continuous or intermittent input from a fentanyl electrotransport system. J. Pharm. Sci. 87:976–981 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Singh, S. Boniello, P. Liu, and S. Dinh. Transdermal iontophoretic delivery of methylphenidate HCl in vitro. Int. J. Pharm. 178:121–128 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. B. Schuetz, A. Naik, R. H. Guy, E. Vuaridel, and Y. N. Kalia. Transdermal iontophoretic delivery of triptorelin in vitro. J. Pharm. Sci. 94:2175–2182 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    G. B. Kasting and J. C. Keister. Application of electrodiffusion theory for a homogeneous membrane to iontophoretic transport through skin. J. Control. Release 8:195–210 (1989).CrossRefGoogle Scholar
  29. 29.
    W. H. M. Craane-van Hinsberg, L. Bax, N. H. M. Flinterman, J. Verhoef, H. E. Junginger, and H. E. Bodde. Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis protocol, pH and ionic strength on peptide flux and skin impedance. Pharm. Res. 11:1296–1300 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    M. F. Lu, D. Lee, R. Carlson, G. S. Rao, H. W. Hui, L. Adjei, M. Herrin, D. Sundberg, and L. Hsu. The effects of formulation variables on iontophoretic transdermal delivery of leuprolide to humans. Drug Deliv. Ind. Pharm. 19:1557–1571 (1993).Google Scholar
  31. 31.
    Y. B. Schuetz, A. Naik, R. H. Guy, and Y. N. Kalia. Effect of amino acid sequence on transdermal iontophoretic peptide delivery. Eur. J. Pharm. Sci. 26:429–437 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    G. H. Barlow and E. Margoliash. Electrophoretic behaviour of mammalian-type cytochromes c. J. Biol. Chem. 241:1473–1477 (1966).PubMedGoogle Scholar
  33. 33.
    J. Hirvonen and R. H. Guy. Transdermal iontophoresis: modulation of electroosmosis by polypeptide. J. Control. Release 50:283–289 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    R. V. Rice, M. A. Stahmann, and R. A. Alberty. The interaction of lysine polypeptides and bovine plasma albumin. J. Biol. Chem. 209:105–115 (1954).PubMedGoogle Scholar
  35. 35.
    J. Hirvonen and R. H. Guy. Iontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. Pharm. Res. 14:1258–1263 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Marro, Y. N. Kalia, M. B. Delgado-Charro, and R. H. Guy. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm. Res. 18:1701–1708 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    I. Ichinose, Y. Hashimoto, and T. Kunitake. Wrapping of bio-macromolecule (dextran, amylopectin and horse heart Cytochrome c) with ultrathin silicate layer. Chem. Lett. 33:656–657 (2004).CrossRefGoogle Scholar
  38. 38.
    V. Aguilella, K. Kontturi, L. Murtomäki, and P. Ramirez. Estimation of the pore size and charge density in human cadaver skin. J. Control. Release 32:249–257 (1994).CrossRefGoogle Scholar
  39. 39.
    O. D. Uitto and H. S. White. Electroosmotic pore transport in human skin. Pharm. Res. 20:646–652 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    M. J. Pikal. Transport mechanisms in iontophoresis: I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis. Pharm. Res. 7:118–126 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    S. B. Ruddy and B. W. Hadzija. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des. Discov. 8:207–224 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Cázares-Delgadillo
    • 1
    • 2
  • A. Naik
    • 1
    • 2
    • 4
  • A. Ganem-Rondero
    • 3
  • D. Quintanar-Guerrero
    • 3
  • Y. N. Kalia
    • 1
    • 2
  1. 1.School of Pharmaceutical SciencesUniversity of Geneva & University of LausanneGenevaSwitzerland
  2. 2.“Pharmapeptides”Centre Interuniversitaire de Recherche et d’EnseignementArchampsFrance
  3. 3.División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoEstado de MéxicoMexico
  4. 4.Triskel Integrated Services SAGenevaSwitzerland

Personalised recommendations