Pharmaceutical Research

, Volume 24, Issue 9, pp 1628–1635 | Cite as

Decreased Proliferation and Erythroid Differentiation of K562 Cells by siRNA-induced Depression of OCTN1 (SLC22A4) Transporter Gene

  • Toshimichi Nakamura
  • Shigeki Sugiura
  • Daisuke Kobayashi
  • Kenji Yoshida
  • Hikaru Yabuuchi
  • Shin Aizawa
  • Tomoji Maeda
  • Ikumi Tamai
Research Paper



Recently, it was reported that OCTN1 transporter (SLC22A4) is associated with rheumatoid arthritis (RA) and Crohn’s disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, preferentially in erythroid cells. Accordingly, we assessed the physiological role of OCTN1 by examining the effect of knockdown of OCTN1 in blood cells using siRNA method.

Materials and Methods

Vector-based short hairpin RNA (shRNA) was used to establish K562 cell line which shows stably decreased expression of OCTN1. The characteristic of knockdown of OCTN1 in K562 cells was investigated by cell proliferation, cell differentiation, and uptake of ergothioneine that is a good substrate of OCTN1.


Several clones of K562 cells exhibited significantly reduced expression of OCTN1 mRNA and protein. They also showed a decreased growth rate and butyrate-dependent differentiation to erythrocytes compared with control-vector transfected cells. In addition, uptake of [3H]ergothioneine by K562 cells suggested that Na+-dependent and high-affinity transporter which is similar to the characteristics of OCTN1 is functional. Moreover, uptake of ergothioneine by K562 cells which exhibit decreased-expression of OCTN1 was decreased in comparison with wild type K562 cells.


It was suggested that OCTN1 is involved in the transport of physiological compounds that are important for cell proliferation and erythroid differentiation.

Key words

ergothioneine erythrocyte K562 OCTN1 siRNA transporter 





fetal bovine serum


glyceraldehyde-3-phosphate dehydrogenase




organic cation/carnitine transporter


phosphate-buffered saline


polymerase chain reaction


rheumatoid arthritis



This investigation was supported in part by a Grant in Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. 1.
    I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419:107–111 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Yabuuchi, I. Tamai, J. Nezu, K. Sakamoto, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289:768–773 (1999).PubMedGoogle Scholar
  3. 3.
    I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    I. Tamai, R. Ohashi, J. Nezu, Y. Sai, D. Kobayashi, A. Oku, M. Shimane, and A. Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J. Biol. Chem. 275:40064–40072 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Nezu, I. Tamai, A. Oku, R. Ohashi, H. Yabuuchi, N. Hashimoto, H. Nikaido, Y. Sai, A. Koizumi, Y. Shoji, G. Takada, T. Matsuishi, M. Yoshino, H. Kato, T. Ohura, G. Tsujimoto, J. Hayakawa, M. Shimane, and A. Tsuji. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 21:91–94 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    I. Tamai, T. Nakanishi, D. Kobayashi, K. China, Y. Kosugi, J. Nezu, Y. Sai, and A. Tsuji. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol. Pharm. 1:57–66 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Kobayashi, S. Aizawa, T. Maeda, I. Tsuboi, H. Yabuuchi, J. Nezu, A. Tsuji, and I. Tamai. Expression of organic cation transporter OCTN1 in hematopoietic cells during erythroid differentiation. Exp. Hematol. 32:1156–1162 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Tokuhiro, R. Yamada, X. Chang, A. Suzuki, Y. Kochi, T. Sawada, M. Suzuki, M. Nagasaki, M. Ohtsuki, M. Ono, H. Furukawa, M. Nagashima, S. Yoshino, A. Mabuchi, A. Sekine, S. Saito, A. Takahashi, T. Tsunoda, Y. Nakamura, and M. Yamamoto. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35:341–348 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    V. Peltekova, R. F. Wintle, L. A. Rubin, C. L. Amos, Q. Huang, X. Gu, B. Newman, M. V. Oene, D. Cescon, G. Greenberg, A. M. Griffiths, P. H. St George-Hyslop, and K. A. Siminovitch. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–475 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Yamazaki, M. Takazae, T. Tanaka, T. Ichimori, S. Saito, A. Iida, Y. Onouchi, A. Hata, and Y. Nakamura. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J. Hum. Genet. 49:664–668 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Gründemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, N. Jung, A. Rubbert, and E. Schomig. Discovery of ergothioneine transporter. Proc. Natl. Sci. U.S.A. 102:5256–5261 (2005).CrossRefGoogle Scholar
  12. 12.
    D. Taubert, G. Grimberg, N. Jung, A. Rubbert, and E. Schomig. Function role of the 503F variant of the organic cation transporter OCTN1 in Crohn’s disease. Gut 54:1505–1506 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Mayumi, K. Okamoto, K. Yoshida, Y. Kawai, H. Kawano, T. Hama, and K. Tanaka. Studies on Ergothioneine. VIII. Preventive effects of ergothioneine on cadmium-induced teratogenesis. Chem. Pharm. Bull. 30:2141–2146 (1982).PubMedGoogle Scholar
  14. 14.
    P. E. Hartman. Ergothioneine as antioxidant. Methods Enzymol. 186:310–318 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Shima, T. Maeda, S. Aizawa, I. Tsuboi, D. Kobayashi, R. Kato, and I. Tamai. L-arginine import via cationic amino acid transporter CAT1 is essential for both differentiation and proliferation of erythrocytes. Blood 107:1352–1356 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    C. P. Perkins, V. Mar, J. R. Shutter, J. del Castillo, D. M. Danilenko, E. S. Medlock, I. L. Ponting, M. Graham, K. L. Stark, Y. Zuo, J. M. Cunningham, and R. A. Bosselman. Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev. 11:914–925 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Jordan, A. Schalhorn, and F. M. Wurm. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24:596–601 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Nozawa, M. Nakajima, I. Tamai, K. Noda, J. Nezu, Y. Sai, A. Tsuji, and T. Yokoi. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): Allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804–813 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Zhang, Z. Ao, A. Seth, and S. F. Schlossman. A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J. Immunol. 157:3980–3987 (1996).PubMedGoogle Scholar
  20. 20.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).PubMedGoogle Scholar
  21. 21.
    K. Yamaoka, Y. Tanigawa, T. Nakagawa, and A. Uno. pharmacokinetic analysis programa (multi) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).PubMedGoogle Scholar
  22. 22.
    Y. Kawasaki, Y. Kato, Y. Sai, and A. Tsuji. Functional characterization of human organic cation transporter OCTN1 single nucleotide polymorphisms in the Japanese population. J. Pharm. Sci. 93:2920–2926 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Konishi, N. Tamaki, F. Tunemori, N. Masumitu, H. Okumura, and T. Hama. Studies on ergothioneine (II) origin of ergothioneine in the animal organs. Vitamins 46:127–129 (1972).Google Scholar
  24. 24.
    J.-H. Jang, O. I. Aruoma, L. S. Jen, H. Y. Chung, and Y. J. Surh. Ergothioneine resucues PC12 cells from β-amyloid-induced apoptotic death. Free Radic. Biol. Med. 36:288–299 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Maeda, T. Wakasawa, Y. Shima, I. Tsuboi, S. Aizawa, and I. Tamai. Biol. Pharm. Bull. 29:234–239 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Oishi, S. Hofmann, G. A. Diaz, B. Tartania, D. Manwani, L. Ng, R. Young, H. Vlassara, Y. A. Loannou, D. Forrest, and B. D. Gelb. Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum. Mol. Genet. 11:2951–2960 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Maeda, M. Hirayama, D. Kobayashi, K. Miyazawa, and I. Tamai. Mechanism of the regulation of OCTN1 transporter (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. Drug Metab. Dispos. 35:394–401 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Toshimichi Nakamura
    • 1
  • Shigeki Sugiura
    • 2
  • Daisuke Kobayashi
    • 1
  • Kenji Yoshida
    • 1
  • Hikaru Yabuuchi
    • 3
  • Shin Aizawa
    • 4
  • Tomoji Maeda
    • 1
  • Ikumi Tamai
    • 1
  1. 1.Department of Molecular Biopharmaceutics, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan
  2. 2.Research Institute for Frontier MedicineNara Medical UniversityNaraJapan
  3. 3.GenoMembrane Inc.YokohamaJapan
  4. 4.Department of AnatomyNihon University School of MedicineTokyoJapan

Personalised recommendations