Pharmaceutical Research

, Volume 24, Issue 8, pp 1480–1489 | Cite as

Longitudinal Analysis of Gene Expression in Porcine Skeletal Muscle After Post-Injection Local Injury

  • Pierre J. Ferré
  • Laurence Liaubet
  • Didier Concordet
  • Magali SanCristobal
  • Emmanuelle Uro-Coste
  • Gwenola Tosser-Klopp
  • Agnès Bonnet
  • Pierre-Louis Toutain
  • François Hatey
  • Hervé P. LefebvreEmail author
Research Paper



The purpose of this study is to describe the time course of gene expression in a skeletal muscle local injury induced by an intramuscular (IM) injection, and to compare the dynamics of gene expression with pathological events.

Materials and Methods

Ten piglets received 4 IM injections of propylene glycol in the longissimus dorsi muscles 6 h, 2, 7, and 21 days before euthanasia, where control and injected muscle sites were sampled for RNA isolation and microscopic examination. The hybridization of nylon cDNA microarrays was carried out with radioactive probes obtained from the muscle RNA.


153 genes were found under- or over-expressed at least once among the investigated time-conditions. The eight most discriminant genes were also identified: Two genes (GTP-binding protein RAD and Ankyrin repeat domain protein) were over-expressed at 6 h and six genes between 2 and 21 days (Osteonectin, Fibronectin, Matrix metalloproteinase-2, Collagen alpha 1(I) chain, Collagen alpha 2(I) chain, and Thymosin beta-4). Necrosis, inflammation and regeneration were observed through both the dynamics of gene expression profiles and through the microscopic examinations.


Our data demonstrate that several pathways are involved in post-injection muscle injury, and that necrosis, inflammation and regeneration are not sequential but occur in parallel.

Key words

gene expression profiling injury intramuscular injection local tolerance pathophysiology 



The muscle specific cDNA library used in this work was kindly provided by Christian Bendixen. The authors thank Rémi Houlgatte (TAGC, Marseille, France) for critical discussions about/on Nylon microarray methodology and data analysis. We thank Jean-Pierre Gau, Nadine Gautier, Francis Benne, and Janine Rallières for their technical assistance. We wish to acknowledge support from the CRGS platform of the Toulouse Midi-Pyrenees Genopole (Cécile Donnadieu-Tonon) (, where the nylon membranes were produced. The database with BASE software for MIAME submission was developed by Christelle Dantec and managed by a computer group (SIGENAE, Système d’information du projet d’analyse des génomes des animaux d’élevage, We thank the work group for statistical analysis of microarray data (Philippe Besse, Alain Baccini, Sébastien Déjean, for their advice in the RF analysis and to Christèle Robert-Granié for helpful discussions on the statistical methods.


  1. 1.
    L. F. Hill. Sites for intramuscular injections. J. Pediatr. 70:158–159 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    D. J. Greenblatt, and M. D. Allen. Intramuscular injection-site complications. Jama 240:542–544 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    P. C. Beecroft, and S. Redick. Possible complications of intramuscular injections on the pediatric unit. Pediatr. Nurs. 15:333–336 (1989).PubMedGoogle Scholar
  4. 4.
    E. V. Alvarez, M. Munters, L. S. Lavine, H. Manes, and J. Waxman. Quadriceps myofibrosis. A complication of intramuscular injections. J. Bone Joint Surg. Am. 62:58–60 (1980).PubMedGoogle Scholar
  5. 5.
    S. S. Babhulkar. Triceps contracture caused by injections. A report of 11 cases. J. Bone Joint Surg. Br. 67:94–96 (1985).PubMedGoogle Scholar
  6. 6.
    P. S. Bergeson, S. A. Singer, and A. M. Kaplan. Intramuscular injections in children. Pediatrics 70:944–948 (1982).PubMedGoogle Scholar
  7. 7.
    L. Rossi, and D. Conen. Intramuscular injections–an outdated form of administration? 6 cases of Staphylococcus aureus sepsis following intramuscular injections. Schweiz. Med. Wochensch. 125:1477–1482 (1995).PubMedGoogle Scholar
  8. 8.
    R. K. Gherardi, M. Coquet, P. Cherin, L. Belec, P. Moretto, P. A. Dreyfus, J. F. Pellissier, P. Chariot, and F. J. Authier. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124:1821–1831 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    J. G. Tidball. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R345–R353 (2005).PubMedGoogle Scholar
  10. 10.
    P. J. Ferre, E. Thein, I. Raymond-Letron, P. L. Toutain, and H. P. Lefebvre. Acute changes in muscle blood flow and concomitant muscle damage after an intramuscular administration. Pharm. Res. 22:405–412 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Mottu, A. Laurent, D. A. Rufenacht, and E. Doelker. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. PDA J. Pharm. Sci. Technol. 54:456–469 (2000).PubMedGoogle Scholar
  12. 12.
    G. A. Brazeau, and H. L. Fung. Mechanisms of creatine kinase release from isolated rat skeletal muscles damaged by propylene glycol and ethanol. J. Pharm. Sci. 79:393–397 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    S. C. Fahrenkrug, T. P. Smith, B. A. Freking, J. Cho, J. White, J. Vallet, T. Wise, G. Rohrer, G. Pertea, R. Sultana, J. Quackenbush, and J. W. Keele. Porcine gene discovery by normalized cDNA-library sequencing and EST cluster assembly. Mamm. Genome 13:475–478 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29:365–371 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Lopez, J. Rougemont, B. Loriod, A. Bourgeois, L. Loi, F. Bertucci, P. Hingamp, R. Houlgatte, and S. Granjeaud. Feature extraction and signal processing for nylon DNA microarrays. BMC Genomics 5:38 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    L. Breiman. Random forests. Mac. Learn. 45:5–32 (2001).CrossRefGoogle Scholar
  17. 17.
    D. B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, and S. K. Kurdistani. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Diaz-Uriarte, and S. Alvarez de Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    L. H. Saal, C. Troein, J. Vallon-Christersson, S. Gruvberger, A. Borg, and C. Peterson. BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome. Biol. 3:SOFTWARE0003 (2002).Google Scholar
  20. 20.
    W. G. Campbell, S. E. Gordon, C. J. Carlson, J. S. Pattison, M. T. Hamilton, and F. W. Booth. Differential global gene expression in red and white skeletal muscle. Am. J. Physiol. Cell Physiol. 280:C763–C768 (2001).PubMedGoogle Scholar
  21. 21.
    Q. Bai, C. McGillivray, N. da Costa, S. Dornan, G. Evans, M. J. Stear, and K. C. Chang. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 4:8 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Sudre, C. Leroux, G. Pietu, I. Cassar-Malek, E. Petit, A. Listrat, C. Auffray, B. Picard, P. Martin, and J. F. Hocquette. Transcriptome analysis of two bovine muscles during ontogenesis. J. Biochem. (Tokyo) 133:745–756 (2003).Google Scholar
  23. 23.
    M. Summan, M. McKinstry, G. L. Warren, T. Hulderman, D. Mishra, K. Brumbaugh, M. I. Luster, and P. P. Simeonova. Inflammatory mediators and skeletal muscle injury: a DNA microarray analysis. J. Interferon. Cytokine Res. 23:237–245 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    G. A. Brazeau, and H. L. Fung. Use of an in vitro model for the assessment of muscle damage from intramuscular injections: in vitro–in vivo correlation and predictability with mixed solvent systems. Pharm. Res. 6:766–771 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Hurme, H. Kalimo, M. Lehto, and M. Jarvinen. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med. Sci. Sports Exerc. 23:801–810 (1991).PubMedGoogle Scholar
  26. 26.
    H. P. Lefebvre, V. Laroute, J. P. Braun, V. Lassourd, and P. L. Toutain. Non-invasive and quantitative evaluation of post-injection muscle damage by pharmacokinetic analysis of creatine kinase release. Vet. Res. 27:343–361 (1996).PubMedGoogle Scholar
  27. 27.
    P. J. Ferre, D. Concordet, V. Laroute, G. P. Chanoit, J. P. Ferre, M. Manesse, and H. P. Lefebvre. Comparison of ultrasonography and pharmacokinetic analysis of creatine kinase release for quantitative assessment of postinjection muscle damage in sheep. Am. J. Vet. Res. 62:1698–1705 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Ishii, and S. H. Lo. A role of tensin in skeletal-muscle regeneration. Biochem. J. 356:737–745 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Bean, M. Salamon, A. Raffaello, S. Campanaro, A. Pallavicini, and G. Lanfranchi. The Ankrd2, Cdkn1c and calcyclin genes are under the control of MyoD during myogenic differentiation. J. Mol. Biol. 349:349–366 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Kojic, E. Medeot, E. Guccione, H. Krmac, I. Zara, V. Martinelli, G. Valle, and G. Faulkner. The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J. Mol. Biol. 339:313–325 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Pallavicini, S. Kojic, C. Bean, M. Vainzof, M. Salamon, C. Ievolella, G. Bortoletto, B. Pacchioni, M. Zatz, G. Lanfranchi, G. Faulkner, and G. Valle. Characterization of human skeletal muscle Ankrd2. Biochem. Biophys. Res. Commun. 285:378–386 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    A. D. Bradshaw, and E. H. Sage. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Invest. 107:1049–1054 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    R. A. Brekken, and E. H. Sage. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 19:569–580 (2000).PubMedCrossRefGoogle Scholar
  34. 34.
    C. Strup-Perrot, D. Mathe, C. Linard, D. Violot, F. Milliat, A. Francois, J. Bourhis, and M. C. Vozenin-Brotons. Global gene expression profiles reveal an increase in mRNA levels of collagens, MMPs, and TIMPs in late radiation enteritis. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G875–G885 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    J. D. Young, A. J. Lawrence, A. G. MacLean, B. P. Leung, I. B. McInnes, B. Canas, D. J. Pappin, and R. D. Stevenson. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 5:1424–1427 (1999).PubMedCrossRefGoogle Scholar
  36. 36.
    K. M. Malinda, G. S. Sidhu, H. Mani, K. Banaudha, R. K. Maheshwari, A. L. Goldstein, and H. K. Kleinman. Thymosin beta4 accelerates wound healing. J. Invest. Dermatol. 113:364–368 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pierre J. Ferré
    • 1
  • Laurence Liaubet
    • 2
  • Didier Concordet
    • 1
  • Magali SanCristobal
    • 2
  • Emmanuelle Uro-Coste
    • 3
  • Gwenola Tosser-Klopp
    • 2
  • Agnès Bonnet
    • 2
  • Pierre-Louis Toutain
    • 1
  • François Hatey
    • 2
  • Hervé P. Lefebvre
    • 1
    Email author
  1. 1.UMR181 de Physiopathologie et Toxicologie Expérimentales, INRA, ENVTNational Veterinary SchoolToulouse cedex 03France
  2. 2.UR 444 Cellular Genetics. INRACastanet-TolosanFrance
  3. 3.U466 Cell Regulation: Lipidoses and Atherosclerosis, Department of PathologyINSERMCHU Rangueil, ToulouseFrance

Personalised recommendations