Advertisement

Pharmaceutical Research

, Volume 24, Issue 8, pp 1441–1449 | Cite as

Molecular Factor Computing for Predictive Spectroscopy

  • Bin Dai
  • Aaron Urbas
  • Craig C. Douglas
  • Robert A. Lodder
Research Paper

Abstract

Purpose

The concept of molecular factor computing (MFC)-based predictive spectroscopy was demonstrated here with quantitative analysis of ethanol-in-water mixtures in a MFC-based prototype instrument.

Methods

Molecular computing of vectors for transformation matrices enabled spectra to be represented in a desired coordinate system. New coordinate systems were selected to reduce the dimensionality of the spectral hyperspace and simplify the mechanical/electrical/computational construction of a new MFC spectrometer employing transmission MFC filters. A library search algorithm was developed to calculate the chemical constituents of the MFC filters. The prototype instrument was used to collect data from 39 ethanol-in-water mixtures (range 0–14%). For each sample, four different voltage outputs from the detector (forming two factor scores) were measured by using four different MFC filters. Twenty samples were used to calibrate the instrument and build a multivariate linear regression prediction model, and the remaining samples were used to validate the predictive ability of the model.

Results

In engineering simulations, four MFC filters gave an adequate calibration model (r2 = 0.995, RMSEC = 0.229%, RMSECV = 0.339%, p = 0.05 by f test). This result is slightly better than a corresponding PCR calibration model based on corrected transmission spectra (r2 = 0.993, RMSEC = 0.359%, RMSECV = 0.551%, p = 0.05 by f test). The first actual MFC prototype gave an RMSECV = 0.735%.

Conclusion

MFC was a viable alternative to conventional spectrometry with the potential to be more simply implemented and more rapid and accurate.

Key words

chemometrics genetic algorithm multivariate analysis near infrared spectroscopy (NIR) optical computing 

Notes

Acknowledgement

This work was supported in part by the National Science Foundation through CNS-0540178, the Kentucky Science and Education Fund, and by the National Institutes of Health through N01AA 33003 and T32 HL072743.

References

  1. 1.
    R. J. Dempsey, D. G. Davis, R. G. Buice, and R. A. Lodder. Biological and medical applications of near-infrared spectroscopy. Appl. Spectrosc. 50:18A–34A (1996).CrossRefGoogle Scholar
  2. 2.
    J. K. Drennen and R. A. Lodder. Nondestructive near-infrared analysis of intact tablets for determination of degradation products. J. Pharm. Sci. 79:622–627 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    A. S. El-Hagrasy, H. R. Morris, F. D’Amico, R. A. Lodder, and J. K. Drennen, 3rd. Near-infrared spectroscopy and imaging for the monitoring of powder blend homogeneity. J. Pharm. Sci. 90:1298–1307 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Urbas, M. W. Manning, A. Daugherty, L. A. Cassis, and R. A. Lodder. Near-infrared spectrometry of abdominal aortic aneurysm in the ApoE−/− mouse. Anal. Chem. 75:3318–3323 (2003).CrossRefGoogle Scholar
  5. 5.
    T. D. Ridder, S. P. Hendee, and C. D. Brown. Noninvasive alcohol testing using diffuse reflectance near-infrared spectroscopy. Appl. Spectrosc. 59:181–189 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    J. C. Soto, C. P. Meza, W. Caraballo, C. Conde, T. Li, K. R. Morris, and R. J. Romanach. On line non-destructive determination of drug content in moving tablets using near infrared spectroscopy. Journal of Process Analytical Technology 2(5):8–14 (2005).Google Scholar
  7. 7.
    Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Manufacturing and Quality Assurance, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation (CDER), and Research (CDER),Center for Veterinary Medicine (CVM), Office of Regulatory Affairs (ORA), September 2004.Google Scholar
  8. 8.
    A. S. Hussain. Process analytical technology: a first step in a jouney towards the desired state. Journal of Process Analytical Technology 2(1):8–13 (2005).Google Scholar
  9. 9.
    S. R. Byrn, J. K. Liang, S. Bates, and A. W. Newman. PAT—process understanding and control of active pharmaceutical ingredients. Journal of Process Analytical Technology 3(6):14–19 (2006).Google Scholar
  10. 10.
    M. R. Fischer and G. M. Hieftje. Near-IR multiplex bandpass spectrometer utilizing polymer filters. Appl. Spectrosc. 50:1246–1252 (1996).CrossRefGoogle Scholar
  11. 11.
    A. Fong and M. G. Hieftje. Near-IR multiplex bandpass spectrometer using liquid molecular filters. Appl. Spectrosc. 49:493–498 (1995).CrossRefGoogle Scholar
  12. 12.
    K. R. Beebe and B. R. Kowalski. Introduction to multivariate calibration & analysis. Anal. Chem. 59:1007A–1017A (1987).CrossRefGoogle Scholar
  13. 13.
    H. Martens and M. Martens. Multivariate analysis of quality an introduction. Wiley, Chicester (2001).Google Scholar
  14. 14.
    H. Martens and T. Naes. Multivariate calibration. Chapman and Hall, London (1989).Google Scholar
  15. 15.
    R. Leardi. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. 14:643–655 (2000).CrossRefGoogle Scholar
  16. 16.
    R. Leardi. Genetic algorithm-PLS as a tool for wavelength selection in spectral data sets. Data Handl. Sci. Technol. 23:169–196 (2003).Google Scholar
  17. 17.
    C. Schwartz. Integrated Sensing and Processing http://www.darpa.mil/dso/thrust/math/isp.htm.
  18. 18.
    O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, and M. L. Myrick. Design and testing of a multivariate optical element: The first demonstration of multivariate optical computing for predictive spectroscopy. Anal. Chem. 73:1069–1079 (2001).CrossRefGoogle Scholar
  19. 19.
    S. E. Bialkowski. Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals. Anal. Chem. 58:2561–2563 (1986).CrossRefGoogle Scholar
  20. 20.
    A. M. C. Prakash, C. M. Stellman, and K. S. Booksh. Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers. Chemometr. Intell. Lab. Syst. 46:265–274 (1999).CrossRefGoogle Scholar
  21. 21.
    F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soysmi, and M. L. Myrick. On-line reoptimization of filter designs for multivariate optical elements. Appl. Opt. 42:1833–1838 (2003).PubMedGoogle Scholar
  22. 22.
    F. G. Haibach and M. L. Myrick. Precision in multivariate optical computing. Appl. Opt. 43:2130–2140 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Greer, and P. Gemperline. A single-element all-optical approach to chemometric prediction. Vibr. Spectrosc. 28:73–81 (2002).CrossRefGoogle Scholar
  24. 24.
    M. L. Myrick, O. Soyemi, H. Li, L. Zhang, and D. Eastwood. Spectral tolerance determination for multivariate optical element design. Fresenius’ J. Anal. Chem. 369:351–355 (2001).CrossRefGoogle Scholar
  25. 25.
    M. L. Myrick, O. O. Soyemi, F. Haibach, L. Zhang, A. Greer, H. Li, R. Priore, M. V. Schiza, and J. R. Farr. Application of multivariate optical computing to near-infrared imaging. Proc. SPIE Int. Soc. Opt. Eng. 4577:148–157 (2002).Google Scholar
  26. 26.
    M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, and R. Priore. Application of multivariate optical computing to simple near-infrared point measurements. Proc. SPIE Int. Soc. Opt. Eng. 4574:208–215 (2002).Google Scholar
  27. 27.
    O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Nonlinear optimization algorithm for multivariate optical element design. Appl. Spectrosc. 56:477–487 (2002).CrossRefGoogle Scholar
  28. 28.
    O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Design of angle-tolerant multivariate optical elements for chemical imaging. Appl. Opt. 41:1936–1941 (2002).PubMedGoogle Scholar
  29. 29.
    L. A. Cassis, B. Dai, A. Urbas, and R. A. Lodder. In vivo applications of a molecular computing-based high-throughput NIR spectrometer. Proc. SPIE-Int. Soc. Opt. Eng. 5329:239–253 (2004).Google Scholar
  30. 30.
    L. A. Cassis, A. Urbas, and R. A. Lodder. Hyperspectral integrated computational imaging. Anal. Bioanal. Chem. 382:868–872 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Geladi and B. Kowalski. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185:1–17 (1986).CrossRefGoogle Scholar
  32. 32.
    E. Huang, S. H. Cheng, H. Dressman, J. Pittman, M.-H. Tsou, C.-F. Horng, A. B. E. S. Iversen, M. Liao, C.-M. Chen, M. West, J. R. Nevins, and A. T. Huang. Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    R. A. Lodder and G. A. Hieftje. Detection of subpopulations in near-infrared reflectance analysis. Appl. Spectrosc. 42:1500–1512 (1988).CrossRefGoogle Scholar
  34. 34.
    Y. Zou, et al. Making your best case—near-IR spectral identification of soil. Anal. Chem. 65:A434–A439 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bin Dai
    • 1
  • Aaron Urbas
    • 1
  • Craig C. Douglas
    • 2
  • Robert A. Lodder
    • 3
  1. 1.Department of ChemistryUniversity of KentuckyLexingtonUSA
  2. 2.Department of Computer ScienceUniversity of KentuckyLexingtonUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations