Advertisement

Pharmaceutical Research

, Volume 23, Issue 4, pp 680–688 | Cite as

Analysis of in Vitro Skin Permeation of 22-Oxacalcitriol Having a Complicated Metabolic Pathway

  • Koji Yamaguchi
  • Tetsuya Mitsui
  • Toshinori Yamamoto
  • Rie Shiokawa
  • Yuko Nomiyama
  • Norihisa Ohishi
  • Yoshinori Aso
  • Kenji Sugibayashi
Research Paper

Purpose

The purpose of this study is to analyze simultaneous skin permeation and metabolism of 22-oxacalcitriol (OCT) having several metabolites in skin by observing skin permeation of only unchanged OCT through excised rat skin.

Methods

A diffusion model including metabolic processes was employed to express simultaneous skin permeation and metabolism of OCT. In vitro permeation experiments of OCT from Oxarol® ointment through full-thickness and stripped rat skin were carried out using Franz-type diffusion cells. Time courses of unchanged OCT amounts in ointment, skin, and receptor fluid were determined and fitted to diffusion equations to obtain permeation parameters and a metabolic rate.

Results

Fitting curves of the skin permeation profile obtained by the model were sufficiently close to observed data of unchanged OCT amounts in ointment, skin, and receptor fluid. The following parameters were obtained: metabolic rate of 1.37 × 10−1 h−1, and diffusion constants of OCT in stratum corneum (SC) (DSC) and viable epidermis and dermis (VED) (DVED) of 1.50 × 10−7 and 2.96 × 10−4 cm2/h, respectively. The partition coefficient of OCT for SC/ointment (KSC/D) was 7 times greater than that of VED/ointment (KVED/D).

Conclusions

The present analysis made it possible to calculate skin permeation parameters (partitioning, diffusivity, and metabolic rate) of OCT without requiring metabolic information, e.g., quantification of metabolites or identification of metabolic pathways. This would be widely applicable for drugs that are not suitable for conventional methods due to complicated metabolic pathways.

Key Words

diffusion model rat skin skin metabolism skin permeation 22-oxacalcitriol 

Notes

Acknowledgment

We thank Ms. Frances Ford (Chugai Pharmaceutical) for her useful advice in the preparation and language editing of this paper.

References

  1. 1.
    Seki, T., Kawaguchi, T., Juni, K. 1990Enhanced delivery of zidovudine through rat and human skin via ester prodrugsPharm. Res.7948952CrossRefPubMedGoogle Scholar
  2. 2.
    Ghosh, M. K., Mitra, A. K. 1990Carboxylic ester hydrolase activity in hairless and athymic nude mouse skinPharm. Res.7251255CrossRefPubMedGoogle Scholar
  3. 3.
    Fort, J. J., Mitra, A. K. 1994Effects of epidermal/dermal separation methods and ester chain configuration on the bioconversion of a homologous series of methotrexate dialkyl esters in dermal and epidermal homogenates of hairless mouse skinInt. J. Pharm.102241247CrossRefGoogle Scholar
  4. 4.
    Mukhtar, H., Athar, M., Bickers, D. R. 1987Cytochrome P-450 dependent metabolism of testosterone in rat skinBiochem. Biophys. Res. Commun.145749753CrossRefPubMedGoogle Scholar
  5. 5.
    Finnen, M. J., Herdman, M. L., Shuster, S. 1985Distribution and sub-cellular localization of drug metabolizing enzymes in the skinBr. J. Dermatol.113713721PubMedGoogle Scholar
  6. 6.
    Yu, C. D., Fox, J. L., Ho, N. F. H., Higuchi, W. I. 1979Physical model evaluation of topical prodrug delivery—simultaneous transport and bioconversion of vidarabine-5′-valerate I: physical model developmentJ. Pharm. Sci.6813411346PubMedGoogle Scholar
  7. 7.
    Liu, P., Higuchi, W. I., Ghanem, A.-H., Kurihara-Bergstrom, T., Good, W. R. 1990Quantitaton of simultaneous diffusion and metabolism of β-estradiol in hairless mouse skin: enzyme distribution and intrinsic diffusion/metabolism parametersInt. J. Pharm.64725CrossRefGoogle Scholar
  8. 8.
    Bando, H., Sahashi, M., Takagi, T., Yamashita, F., Takakura, Y., Hashida, M. 1996Analysis of in vitro skin penetration of acyclovir prodrugs based on a diffusion model with a metabolic processInt. J. Pharm.13591102CrossRefGoogle Scholar
  9. 9.
    Tojo, K., Yamada, K., Hikita, T. 1994Diffusion and metabolism of prednisolone farnesylate in viable skin of the hairless mousePharm. Res.11393397CrossRefPubMedGoogle Scholar
  10. 10.
    Steinsträsser, I., Sperb, R., Merkle, H. P. 1995Physical model relating diffusional transport and concurrent metabolism of peptides in metabolically active cell sheetJ. Pharm. Sci.8413321341PubMedGoogle Scholar
  11. 11.
    Sato, K., Mine, T. 1996Analysis of in vitro rat skin permeation and metabolism of SM-10902, prodrug of synthetic prostacyclin analogueInt. J. Pharm.135127136CrossRefGoogle Scholar
  12. 12.
    Boderke, P., Schittkowski, K., Wolf, M., Merkle, H. P. 2000Modeling of diffusion and concurrent metabolism in cutaneous tissueJ. Theor. Biol.204393407CrossRefPubMedGoogle Scholar
  13. 13.
    Sugibayashi, K., Hayashi, T., Morimoto, Y. 1999Simultaneous transport and metabolism of ethyl nicotinate in hairless rat skin after its topical application: the effect of enzyme distribution in skinJ. Control. Release62201208CrossRefPubMedGoogle Scholar
  14. 14.
    Abe, J., Morikawa, M., Miyamoto, K., Kaiho, S., Fukushima, M., Miyaura, C., Abe, E., Suda, T., Nishii, Y. 1987Synthetic analogues of vitamin D3 with an oxygen atom in the side chain skeletonFEBS Lett.2265862CrossRefPubMedGoogle Scholar
  15. 15.
    Barker, J. N. W. N., Ashton, R. E., Marks, R., Harris, R. I., Berth-Jones, J. 1999Topical application for the treatment of psoriasis vulgaris: a placebo-controlled, double-blind, dose-finding study with active comparatorBr. J. Dermatol.141 274278CrossRefPubMedGoogle Scholar
  16. 16.
    Yamaoka, K., Tanigawara, Y., Nakagawa, T., Uno, T. 1981A pharmacokinetic analysis program (MULTI) for microcomputerJ. Pharmacobio-dyn.4879885PubMedGoogle Scholar
  17. 17.
    Masuda, S., Byford, V., Kremer, R., Makin, H. L. J., Kubodera, N., Nishii, Y., Okazaki, A., Okano, T., Kobayashi, T., Jones, G. 1996In vitro metabolism of the vitamin D analog, 22-oxacalcitriol, using cultured osteosarcoma, hepatoma, and keratinocyte cell linesJ. Biol. Chem.27187008708CrossRefPubMedGoogle Scholar
  18. 18.
    Kao, J., Patterson, F. K., Hall, J. 1985Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo[a]pyrene and testosteroneToxicol. Appl. Pharmacol.81502516CrossRefPubMedGoogle Scholar
  19. 19.
    Münster, U., Hammer, S., Blume-Peytavi, U., Schäfer-Korting, M. 2002Testosterone metabolism in human skin cells in vitro and its interaction with estradiol and dutasterideSkin Pharmacol. Appl. Skin Physiol.16356366Google Scholar
  20. 20.
    Ademola, J. I., Chow, C. A., Wester, R. C., Maibach, H. I. 1993Metabolism of propranolol during percutaneous absorption in human skinJ. Pharm. Sci.82767770PubMedGoogle Scholar
  21. 21.
    Moody, R. P., Nadeau, B. 1993An automated in vitro dermal absorption procedure: III. In vivo and in vitro comparison with the insect repellent N,N-diethyl-m-toluamide in mouse, rat, guinea pig, pig, human and tissue-cultured skinToxicol. In Vitro7167176CrossRefGoogle Scholar
  22. 22.
    Sandt, J. J. M., Meuling, W. J. A., Elliott, G. R., Cnubben, N. H. P., Hakkert, B. C. 2000Comparative in vitroin vivo percutaneous absorption of the pesticide propoxurToxicol. Sci.581522CrossRefPubMedGoogle Scholar
  23. 23.
    Payan, J. P., Boudry, I., Beydon, D., Fabry, J. P., Grandclaude, M. C., Ferrari, E., Andre, J. C. 2003Toxicokinetics and metabolism of N-[14C]N-methyl-2-pyrrolidone in male Sprague– Dawley rats: in vivo and in vitro percutaneous absorptionDrug Metab. Dispos.31659669CrossRefPubMedGoogle Scholar
  24. 24.
    Hashida, M., Okano, H., Sezaki, H. 1988Analysis of drug penetration through skin considering donor concentration decreaseJ. Pharmacobio-dyn.11636644PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Koji Yamaguchi
    • 1
  • Tetsuya Mitsui
    • 1
  • Toshinori Yamamoto
    • 1
    • 3
  • Rie Shiokawa
    • 1
  • Yuko Nomiyama
    • 1
  • Norihisa Ohishi
    • 1
  • Yoshinori Aso
    • 1
  • Kenji Sugibayashi
    • 2
  1. 1.Fuji Gotemba Research LaboratoriesChugai Pharmaceutical Co., Ltd.GotembaJapan
  2. 2.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  3. 3.Worldwide Safety Sciences, Pfizer Global Research & Development, Nagoya LaboratoriesPfizer Inc.AichiJapan

Personalised recommendations