Advertisement

Pharmaceutical Research

, Volume 23, Issue 4, pp 770–781 | Cite as

Oligonucleotide-Polyethylenimine Complexes Targeting Retinal Cells: Structural Analysis and Application to Anti-TGFβ-2 Therapy

  • Ana L. Gomes dos Santos
  • Amélie Bochot
  • Nicolas Tsapis
  • Franck Artzner
  • Riad Antoine Bejjani
  • Brigitte Thillaye-Goldenberg
  • Yvonne de Kozak
  • Elias Fattal
  • Francine Behar-Cohen
Research Paper

Purpose

The aim of this study was to characterize oligonucleotide–polyethylenimine (ODN/PEI) complex preparation for potential transfection of retinal cells in vitro and in vivo.

Methods

The effect of medium preparation [HEPES-buffered saline (HBS), water] on particle size and morphology was evaluated. Cultured Lewis rat retinal Müller glial (RMG) cells were transfected using fluorescein isothiocyanate (FITC)–ODN/PEI complexes specifically directed at transforming growth factor beta (TGFβ)-2. Efficacy of transfection was evaluated using confocal microscopy, and regulation of gene expression was assayed using quantitative real-time RT-PCR and ELISA assay. One, 24, and 72 h after injection of FITC–ODN/PEI complexes into the vitreous of rat eyes, their distribution was analyzed on eye sections.

Results

Complexes prepared in HBS were smaller than complexes prepared in pure water and presented a core–shell structure. These particles showed a high cellular internalization efficacy, along with a significant and specific down-regulation of TGFβ-2 expression and production in RMG cells, correlating with specific inhibition of cell growth at 72 h. In vivo, complexes efficiently transfect retinal cells and follow a transretinal migration at 24 h. After 72 h, ODN seems to preferentially target RMG cells without inducing any detectable toxicity.

Conclusions

Specific down-regulation of TGFβ-2 expression using ODN/PEI complexes may have potential interest for the treatment of retinal diseases associated with glial proliferation.

Key Words

antisense oligonucleotides polyethylenimine retinal Müller glial cells TGFβ-2 

Notes

Acknowledgments

We gratefully acknowledge Dr. C. Deloménie from Plate-forme Transcriptome (INSERM IFR-75 ISIT), Dr. D. Jaillard (UMR CNRS 8080, CCME, Université Paris-Sud), Dr. H. Alphandary (UMR CNRS 8612), Dr. F. Garnier (Ecole Centrale Paris), G. Frebourg. and Dr. J.-P. Lechaire (UMR CNRS 7622, Université Pierre et Marie Curie) for their technical assistance. Ana L. G. Santos was supported by a fellowship from Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (Brazil). We also acknowledge the “Fondation pour l'Avenir” and EviGenoRet LSHG-CT-2005-512036 for funding of this work.

References

  1. 1.
    Bennett, C. F. 1999Antisense oligonucleotide therapeuticsExpert Opin. Investig. Drugs8237253CrossRefPubMedGoogle Scholar
  2. 2.
    Akhtar, S., Juliano, R. L. 1992Cellular uptake and intracellular fate of antisense oligonucleotidesTrends Cell. Biol.2139144CrossRefPubMedGoogle Scholar
  3. 3.
    Capaccioli, S., Pasquale, G., Mini, E., Mazzei, T., Quattrone, A. 1993Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and in human serumBiochem. Biophys. Res. Commun.197818825CrossRefPubMedGoogle Scholar
  4. 4.
    Lewis, J. G., Lin, K. Y., Kothavale, A., Flanagan, W. M., Matteucci, M. D., DePrince, R. B., Mook, R. A.,Jr., Hendren, R. W., Wagner, R. W. 1996A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNAProc. Natl. Acad. Sci. USA9331763181CrossRefPubMedGoogle Scholar
  5. 5.
    Yoo, H., Juliano, R. L. 2000Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimersNucleic Acids Res.2842254231CrossRefPubMedGoogle Scholar
  6. 6.
    Lochmann, D., Jauk, E., Zimmer, A. 2004Drug delivery of oligonucleotides by peptidesEur. J. Pharm. Biopharm.58237251CrossRefPubMedGoogle Scholar
  7. 7.
    Orr, R. M. 2001Technology evaluation: fomivirsen, Isis Pharmaceuticals Inc/CIBA visionCurr. Opin. Mol. Ther.3288294PubMedGoogle Scholar
  8. 8.
    Bochot, A., Fattal, E., Gulik, A., Couarraze, G., Couvreur, P. 1998Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotidesPharm. Res.1513641369CrossRefPubMedGoogle Scholar
  9. 9.
    Bochot, A., Fattal, E., Boutet, V., Deverre, J. R., Jeanny, J. C., Chacun, H., Couvreur, P. 2002Intravitreal delivery of oligonucleotides by sterically stabilized liposomesInvest. Ophthalmol. Vis. Sci.43253259PubMedGoogle Scholar
  10. 10.
    Bejjani, R. A., BenEzra, D., Cohen, H., Rieger, J., Andrieu, C., Jeanny, J. C., Gollomb, G., Behar-Cohen, F. F. 2005Nanoparticles for gene delivery to retinal pigment epithelial cellsMol. Vis.11124132PubMedGoogle Scholar
  11. 11.
    Scherer, J., Schnitzer, J. 1994Growth factor effects on the proliferation of different retinal glial cells in vitro Brain Res. Dev. Brain Res.80209221CrossRefPubMedGoogle Scholar
  12. 12.
    Kon, C. H., Occleston, N. L., Aylward, G. W., Khaw, P. T. 1999Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective studyInvest. Ophthalmol. Vis. Sci.40705712PubMedGoogle Scholar
  13. 13.
    Lee, E. H., Seomun, Y., Hwang, K. H., Kim, J. E., Kim, I. S., Kim, J. H., Joo, C. K. 2000Overexpression of the transforming growth factor-beta-inducible gene betaig-h3 in anterior polar cataractsInvest. Ophthalmol. Vis. Sci.4118401845PubMedGoogle Scholar
  14. 14.
    Nishi, O., Nishi, K., Wada, K., Ohmoto, Y. 1999Expression of transforming growth factor (TGF)-alpha, TGF-beta(2) and interleukin 8 messenger RNA in postsurgical and cultured lens epithelial cells obtained from patients with senile cataractsGraefes Arch. Clin. Exp. Ophthalmol.237806811CrossRefPubMedGoogle Scholar
  15. 15.
    Behar-Cohen, F. F., Thillaye-Goldenberg, B., Bizemont, T., Savoldelli, M., Chauvaud, D., Kozak, Y. 2000EIU in the rat promotes the potential of syngeneic retinal cells injected into the vitreous cavity to induce PVRInvest. Ophthalmol. Vis. Sci.4139153924PubMedGoogle Scholar
  16. 16.
    Connor, T. B.,Jr., Roberts, A. B., Sporn, M. B., Danielpour, D., Dart, L. L., Michels, R. G., Bustros, S., Enger, C., Kato, H., Lansing, M.,  et al. 1989Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eyeJ. Clin. Invest.8316611666PubMedCrossRefGoogle Scholar
  17. 17.
    Lutty, G. A., Merges, C., Threlkeld, A. B., Crone, S., McLeod, D. S. 1993Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroidInvest. Ophthalmol. Vis. Sci.34477487PubMedGoogle Scholar
  18. 18.
    Pasquale, L. R., Dorman-Pease, M. E., Lutty, G. A., Quigley, H. A., Jampel, H. D. 1993Immunolocalization of TGF-beta 1,TGF-beta 2, and TGF-beta 3 in the anterior segment of the human eyeInvest. Ophthalmol. Vis. Sci.342330PubMedGoogle Scholar
  19. 19.
    Oshima, Y., Sakamoto, T., Hisatomi, T., Tsutsumi, C., Ueno, H., Ishibashi, T. 2002Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathyGene Ther.912141220CrossRefPubMedGoogle Scholar
  20. 20.
    Cordeiro, M. F., Mead, A., Ali, R. R., Alexander, R. A., Murray, S., Chen, C., York-Defalco, C., Dean, N. M., Schultz, G. S., Khaw, P. T. 2003Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcomeGene Ther.105971CrossRefPubMedGoogle Scholar
  21. 21.
    Ungaro, F., Rosa, G., Miro, A., Quaglia, F. 2003Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulationsJ. Pharm. Biomed. Anal.31143149CrossRefPubMedGoogle Scholar
  22. 22.
    Richard, A., Marchi-Artzner, V., Lalloz, M. N., Brienne, M. J., Artzner,  F., Gulik-Krzywicki, T., Guedeau-Boudeville, M. A., Lehn, J. M. 2004Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligandsProc. Natl. Acad. Sci. USA1011527915284CrossRefPubMedGoogle Scholar
  23. 23.
    Kozak, Y., Naud, M. C., Bellot, J., Faure, J. P., Hicks, D. 1994Differential tumor necrosis factor expression by resident retinal cells from experimental uveitis-susceptible and -resistant rat strainsJ. Neuroimmunol.5519CrossRefPubMedGoogle Scholar
  24. 24.
    Bourges, J. L., Gautier, S. E., Delie, F., Bejjani, R. A., Jeanny, J. C., Gurny,  R., BenEzra, D., Behar-Cohen, F. F. 2003Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactidenanoparticlesInvest. Ophthalmol. Vis. Sci.4435623569CrossRefPubMedGoogle Scholar
  25. 25.
    Wightman, L., Kircheis, R., Rossler, V., Carotta, S., Ruzicka, R., Kursa, M., Wagner, E. 2001Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo J. Gene Med.3362372CrossRefPubMedGoogle Scholar
  26. 26.
    Tang, M. X., Szoka, F. C. 1997The influence of polymer structureon the interactions of cationic polymers with DNA and morphology of the resulting complexesGene Ther.4823832CrossRefPubMedGoogle Scholar
  27. 27.
    Smedt, S. C., Demeester, J., Hennink, W. E. 2000Cationic polymer based gene delivery systemsPharm. Res.17113126CrossRefPubMedGoogle Scholar
  28. 28.
    Kramer, G. B., Buchhamer, H. M., Lunkwitz, K. 1997Surface modification by polyelectrolyte complexes: influence of different polyelectrolyte components and substratesColl. Surf.A122112CrossRefGoogle Scholar
  29. 29.
    Vijayanathan, V., Thomas, T., Thomas, T. J. 2002DNA nanoparticles and development of DNA delivery vehicles for gene therapyBiochemistry411408514094CrossRefPubMedGoogle Scholar
  30. 30.
    Bloomfield, V. A. 1997DNA condensation by multivalent cationsBiopolymers44269282CrossRefPubMedGoogle Scholar
  31. 31.
    Saminathan, M., Antony, T., Shirahata, A., Sigal, L. H., Thomas, T., Thomas, T. J. 1999Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNABiochemistry3838213830CrossRefPubMedGoogle Scholar
  32. 32.
    Jääskeläinen, I., Peltola, S., Honkakoski, P., Monkkonen, J., Urtti, A. 2000A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotidesEur. J. Pharm. Sci.10187193CrossRefPubMedGoogle Scholar
  33. 33.
    Ikeda, T., Puro, D. G. 1995Regulation of retinal glial cell proliferation by antiproliferative moleculesExp. Eye Res.60435443CrossRefPubMedGoogle Scholar
  34. 34.
    Guerin, C. J., Hu, L., Scicli, G., Scicli, A. G. 2001Transforming growth factor beta in experimentally detached retina and periretinal membranesExp. Eye Res.73753764CrossRefPubMedGoogle Scholar
  35. 35.
    Normand, N., Valamanesh, F., Savoldelli, M., Mascarelli, F., BenEzra, D., Courtois, Y., Behar-Cohen, F. 2005VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo Mol. Vis.11184191PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Ana L. Gomes dos Santos
    • 1
    • 2
    • 3
  • Amélie Bochot
    • 2
  • Nicolas Tsapis
    • 2
  • Franck Artzner
    • 4
  • Riad Antoine Bejjani
    • 1
  • Brigitte Thillaye-Goldenberg
    • 1
  • Yvonne de Kozak
    • 1
  • Elias Fattal
    • 2
  • Francine Behar-Cohen
    • 1
  1. 1.INSERM U 598ParisFrance
  2. 2.Laboratoire de Physico-Chimie, Pharmacotechnie, BiopharmacieUMR CNRS 8612Châtenay-MalabryFrance
  3. 3.Departamento de Ciencias FarmaceuticasUniversidade Federal de Santa Catarina (UFSC)FlorianopolisBrazil
  4. 4.Laboratoire de Physique de la Matière Condensée, Unité Mixte de Recherche 6626Université de Rennes 1RennesFrance

Personalised recommendations