Advertisement

Pharmaceutical Research

, Volume 23, Issue 4, pp 798–805 | Cite as

Molecular Mobility in Glass Forming Fananserine: A Dielectric, NMR, and TMDSC Investigation

  • L. Carpentier
  • R. Decressain
  • A. De Gusseme
  • C. Neves
  • M. Descamps
Research Paper

Purpose

This study was conducted to characterize the molecular mobility of supercooled fananserine and derive from this analysis the non-Arrhenius and nonexponential properties of the primary α-relaxation.

Methods

The use of three investigation techniques of the molecular mobility, namely, dielectric relaxation, modulated differential scanning calorimetry, and proton nuclear magnetic resonance, allowed us to describe the dynamic properties of supercooled fananserine on a wide range of frequencies and temperatures, ranging from the melting temperature Tm = 372 K down to the glass transition temperature Tg = 292 K.

Results

We emphasized the capacity of these three techniques to give a coherent set of information. We used the coupling-model theory to interpret the dielectric results. It allowed us to identify two relaxation processes (α and β), corresponding to different molecular motions. The temperature evolution of the α-relaxation indicates that fananserine is a fragile glass former, as reflected by the steepness index value, m = 77. The temperature To where the relaxation times diverge was also determined.

Conclusions

The description of the dielectric relaxation data in terms of the Kohlrausch–Williams–Watt relaxation function has shown the existence of an additional low-amplitude relaxation process assigned to the so-called Johari–Goldstein process. Mainly concerned by the primary α-process directly involved in the glass formation, we derived from this analysis the characteristic features of this process and showed that supercooled fananserine is characterized by a strongly non-Arrhenius and nonexponential behavior.

Key Words

α-relaxation amorphous state fragility glass transition nonexponential relaxation 

Notes

Acknowledgment

We gratefully acknowledge the financial support by the FEDER in the fame of an Interreg III program (Nord-Pas de Calais, Haute Normandie, Kent).

References

  1. 1.
    Yoshioka, M., Hancock, B. C., Zografi, G. 1995Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitatesJ. Pharm. Sci.84983986PubMedGoogle Scholar
  2. 2.
    Hancock, B. C., Shamblin, S. L., Zografi, G. 1995Molecular mobility of pharmaceutical solids below the glass transition temperaturePharm. Res.12799806CrossRefPubMedGoogle Scholar
  3. 3.
    Ediger, M. D., Angell, C. A., Nagel, S. R. 1996Supercooled liquids and glassesJ. Phys. Chem.1001320013212CrossRefGoogle Scholar
  4. 4.
    Shamblin, S. L., Tang, X., Chang, L., Hancock, B. C., Pikal, M. J. 1999Characterization of the time scales of molecular motion in pharmaceutically important glassesJ. Phys. Chem., B.10341134121CrossRefGoogle Scholar
  5. 5.
    Tanaka, H. 2003Relation between thermodynamics and kinetics of glass-forming liquidsPhys. Rev. Lett.9057015704Google Scholar
  6. 6.
    Böhmer, R., Ngai, K. L., Angell, C. A., Plazek, D. J. 1993Nonexponential relaxations in strong and fragile glass formersJ. Chem. Phys.9942014209CrossRefGoogle Scholar
  7. 7.
    Phillips, J. C. 1996Stretched exponential relaxation in molecular and electronic glassesRep. Prog. Phys.5911331207CrossRefGoogle Scholar
  8. 8.
    J. Giovannini. PhD thesis, University of Rennes 1, number 2648, 2001.Google Scholar
  9. 9.
    Giovannini, J., Minassian, L., Ceolin, R., Toscani, S., Perrin, M. A., Louer, D., Leveiller, F. 2001Tetramorphism of fananserine: p, T diagram and stability hierarchy from crystal structure determinations and thermodynamic studiesJ. Phys., IV11123126Google Scholar
  10. 10.
    A. De Gusseme. PhD thesis, University of Lille 1, number 3353, 2003.Google Scholar
  11. 11.
    Bustin, O., Descamps, M. 1999Slow structural relaxations of glass-forming Maltitol by modulated DSC calorimetryJ. Chem. Phys.1101098210992CrossRefGoogle Scholar
  12. 12.
    Johari, G. P. 1976The glass transition and the nature of the glassy stateAnn. N. Y. Acad. Sci.279117140Google Scholar
  13. 13.
    Ngai, K. L., Paluch, M. 2004Classification of secondary relaxation in glass-formers based on dynamic propertiesJ. Chem. Phys.120857873CrossRefPubMedGoogle Scholar
  14. 14.
    Ngai, K. L. 1998Relation between some secondary relaxations and the α relaxations in glass-forming materials according to the coupling modelJ. Chem. Phys.10969826994CrossRefGoogle Scholar
  15. 15.
    Ngai, K. L., Lunkenheimer, P., Leon, C., Schneider, U., Brand, R., Loidl, A. 2001Nature and properties of the Johari–Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formersJ. Chem. Phys.11514051413CrossRefGoogle Scholar
  16. 16.
    Carpentier, L., Bustin, O., Descamps, M. 2002Temperature-modulated differential scanning calorimetry as a specific heat spectroscopyJ. Phys., D. Appl. Phys.35402408CrossRefGoogle Scholar
  17. 17.
    Weyer, S., Hensel, A., Schick, C. 1997Phase angle correction for TMDSC in the glass-transition regionThermochim. Acta304–305267275CrossRefGoogle Scholar
  18. 18.
    Carpentier, L., Bourgois, L., Descamps, M. 2002Contribution of temperature modulated DSC to the study of the molecular mobility in glass forming pharmaceutical systemsJ. Therm. Anal. Calorim.68727739CrossRefGoogle Scholar
  19. 19.
    Carpentier, L., Desprez, S., Descamps, M. 2003From strong to fragile glass-forming systems: a temperature modulated differential scanning calorimetry investigationPhase Transit.76787799CrossRefGoogle Scholar
  20. 20.
    Böhmer, R., Sanchez, E., Angell, C. A. 1992A.c. technique for simultaneous study of local and global linear responses near the glass transition: the case of doped calcium(2+)/potassium(1+)/nitrateJ. Phys. Chem.9690899092CrossRefGoogle Scholar
  21. 21.
    Abragam, A. 1961Principles of Nuclear MagnetismOxford University PressOxfordGoogle Scholar
  22. 22.
    Schlichter, C. P. 1978Principles of Magnetic Resonance2SpringerHeidelbergGoogle Scholar
  23. 23.
    Bloembergen, N., Purcell, E. M., Pound, R. V. 1948Relaxation effects in nuclear magnetic resonance absorptionPhys. Rev.73679712CrossRefGoogle Scholar
  24. 24.
    Böhmer, R., Diezemann, G., Hinze, G., Rössler, E. 2001Dynamics of supercooled liquids and glassy solidsProg. Nucl. Magn. Reson. Spectrosc.39190267Google Scholar
  25. 25.
    Beckmann, P. A. 1998Spectral densities and nuclear spin relaxation in solidsPhys. Rep.17185128CrossRefGoogle Scholar
  26. 26.
    Forte, C., Geppi, M., Malvaldi, M., Mattoli, V. 2004Dynamics of an amorphous polymer by an improved NMR approach based on the simultaneous analysis of 1H and 13C relaxation timesJ. Phys. Chem., B.1081083210837CrossRefGoogle Scholar
  27. 27.
    Stickel, F., Fischer, E. W., Richert, R. 1996Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity dataJ. Chem. Phys.10420432055CrossRefGoogle Scholar
  28. 28.
    Okamoto, N., Oguni, M., Sagawa, Y. 1997Generation and extinction of a crystal nucleus below the glass transition temperatureJ. Phys. Condens. Matter991879198CrossRefGoogle Scholar
  29. 29.
    Hatase, M., Hayana, M., Hikima, T., Oguni, M. 2002Discovery of homogeneous-nucleation based crystallization in simple glass-forming liquid of toluene below its glass-transition temperatureJ. Non-Cryst. Solids307–310257263CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • L. Carpentier
    • 1
  • R. Decressain
    • 1
  • A. De Gusseme
    • 1
  • C. Neves
    • 2
  • M. Descamps
    • 1
  1. 1.Laboratoire de Dynamique et Structures des Matériaux Moléculaires, UMR CNRS 8024, ERT 1018Université de Lille 1Villeneuve d'Ascq CedexFrance
  2. 2.Analytical Sciences Department, Analytical ServicesSanofi AventisVitry-sur-SeineFrance

Personalised recommendations