Pharmaceutical Research

, Volume 24, Issue 6, pp 1186–1192 | Cite as

Optical Imaging of the Adoptive Transfer of Human Endothelial Cells in Mice Using Anti-Human CD31 Monoclonal Antibody

  • Alexei A. BogdanovJr.
  • Charles P. Lin
  • Hye-Won Kang
Research Paper

Purpose

The development of endothelium-specific imaging agents capable of specific binding to human cells under the conditions of flow for the needs of regenerative medicine and cancer research. The goal of the study was testing the feasibility of optical imaging of human endothelial cells implanted in mice.

Methods

Mouse model of adoptive human endothelial cell transfer was obtained by implanting cells in Matrigel matrix in subcutaneous space (Kang, Torres, Wald, Weissleder, and Bogdanov, Jr., Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest. 86: 599-609, 2006). Several endothelium-specific proteins were labeled with near-infrared fluorochrome (Cy5.5) and tested in vitro. Fluorescence imaging using anti-human CD31 antibody was performed in vivo. The obtained results were corroborated by using fluorescence microscopy of tissue sections.

Results

We determined that monoclonal anti-human CD31 antibodies labeled with Cy5.5 were efficiently binding to human endothelial cells and were not subject to rapid endocytosis.We further demonstrated that specific near-infrared optical imaging signal was present only in Matrigel implants seeded with human endothelium cells and was absent from control Matrigel implants. Histology showed staining of cells lining vessels and revealed the formation of branched networks of CD31-positive cells.

Conclusions

Anti-human CD31 antibodies tagged with near-infrared fluorochromes can be used for detection of perfused blood vessels harboring human endothelial cells in animal models of adoptive transfer.

Key Words

adoptive transfer CD31 endothelium fluorescence molecular imaging near-infrared PECAM-1 

Notes

Acknowledgements

This work was supported in part by NIH RO1 EB000858 and EB000664. The authors are grateful to Dr. Marian Nakada (Centocor) for supplying anti-human CD31 monoclonal antibody and to Dr. Bill Luscinskas (Brigham and Women’s Hospital) for providing HUVEC cells.

References

  1. 1.
    H. W. Kang, D. Torres, L. Wald, R. Weissleder, and A. A. Bogdanov, Jr. Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest. 86:599–609 (2006).PubMedGoogle Scholar
  2. 2.
    A. L. Klibanov. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest. Radiol. 41:354–362 (2006).PubMedCrossRefGoogle Scholar
  3. 3.
    F. G. Blankenberg, C. Mari, and H. W. Strauss. Development of radiocontrast agents for vascular imaging: progress to date. Am. J. Cardiovasc. Drugs 2:357–365 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    X. Chen, M. Tohme, R. Park, Y. Hou, J. R. Bading, and P. S. Conti. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imag. 3:96–104 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, and J. R. Lindner. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107:455–60 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    M. M. Sadeghi, J. S. Schechner, S. Krassilnikova, A. A. Gharaei, J. Zhang, N. Kirkiles-Smith, A. J. Sinusas, B. L. Zaret, and J. R. Bender. Vascular cell adhesion molecule-1-targeted detection of endothelial activation in human microvasculature. Transplant. Proc. 36:1585–91 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96:327–336 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Boutry, C. Burtea, S. Laurent, G. Toubeau, L. Vander Elst, and R. N. Muller. Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn. Reson. Med. 53:800–807 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Valadon, J. D. Garnett, J. E. Testa, M. Bauerle, P. Oh, and J. E. Schnitzer. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc. Natl. Acad. Sci. USA 103:407–12 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    E. R. Horak, R. Leek, N. Klenk, S. LeJeune, K. Smith, N. Stuart, M. Greenall, K. Stepniewska, and A. L. Harris. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340:1120–1124 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    S. B. Fox, K. C. Gatter, R. Bicknell, J. J. Going, P. Stanton, T. G. Cooke, and A. L. Harris. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 53:4161–3 (1993).PubMedGoogle Scholar
  12. 12.
    J. M. Runnels, P. Zamiri, J. A. Spencer, I. Veilleux, X. Wei, A. Bogdanov, and C. P. Lin. Imaging molecular expression on vascular endothelial cells by in vivo immunofluorescence microscopy. Mol. Imag. 5:31–40 (2006).Google Scholar
  13. 13.
    N. Koike, D. Fukumura, O. Gralla, P. Au, J. S. Schechner, and R. K. Jain. Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    H. W. Kang, L. Josephson, A. Petrovsky, R. Weissleder, and A. Bogdanov, Jr. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconj. Chem. 13:122–127 (2002).CrossRefGoogle Scholar
  15. 15.
    M. T. Nakada, K. Amin, M. Christofidou-Solomidou, C. D. O’Brien, J. Sun, I. Gurubhagavatula, G. A. Heavner, A. H. Taylor, C. Paddock, Q. H. Sun, J. L. Zehnder, P. J. Newman, S. M. Albelda, and H. M. DeLisser. Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J. Immunol. 164:452–462 (2000).PubMedGoogle Scholar
  16. 16.
    A. Bogdanov, Jr, C. Lin, M. Simonova, L. Matuszewski, and R. Weissleder. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia 4:228–236 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imag. 3:19–23 (2004).CrossRefGoogle Scholar
  18. 18.
    J. S. Schechner, A. K. Nath, L. Zheng, M. S. Kluger, C. C. Hughes, M. R. Sierra-Honigmann, M. I. Lorber, G. Tellides, M. Kashgarian, A. L. Bothwell, and J. S. Pober. in vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. [see comment]. Proc. Natl. Acad. Sci. USA 97:9191–9196 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    D. K. Skovseth, T. Yamanaka, P. Brandtzaeg, E. C. Butcher, and G. Haraldsen. Vascular morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice. Am. J. Pathol. 160:1629–1637 (2002).PubMedGoogle Scholar
  20. 20.
    D. R. Enis, B. R. Shepherd, Y. Wang, A. Qasim, C. M. Shanahan, P. L. Weissberg, M. Kashgarian, J. S. Pober, and J. S. Schechner. Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc. Natl. Acad. Sci. USA 102:425–430 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Hawryszand, and E. Sevick-Muraca. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2:388–417 (2000).CrossRefGoogle Scholar
  22. 22.
    V. Ntziachristos, C. Bremer, and R. Weissleder. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13:195–208 (2003).PubMedGoogle Scholar
  23. 23.
    V. Ntziachristos. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8:1–33 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    K. Lichaand, and C. Olbrich. Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 57:1087–1108 (2005).CrossRefGoogle Scholar
  25. 25.
    R. F. Nicosiaand, and A. Ottinetti. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell. Dev. Biol. 26:119–128 (1990).CrossRefGoogle Scholar
  26. 26.
    A. Passaniti, R. M. Taylor, R. Pili, Y. Guo, P. V. Long, J. A. Haney, R. R. Pauly, D. S. Grant, and G. R. Martin. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67:519–528 (1992).PubMedGoogle Scholar
  27. 27.
    A. Petrovsky, E. Schellenberger, L. Josephson, R. Weissleder, and A. Bogdanov, Jr. Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res. 63:1936–1942 (2003).PubMedGoogle Scholar
  28. 28.
    D. M. McDonaldand, and P. L. Choyke. Imaging of angiogenesis: from microscope to clinic. Nat Med. 9:713–725 (2003).CrossRefGoogle Scholar
  29. 29.
    H. Holthofer, I. Virtanen, A. L. Kariniemi, M. Hormia, E. Linder, and A. Miettinen. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47:60–66 (1982).PubMedGoogle Scholar
  30. 30.
    E. J. von Asmuth, E. F. Smeets, L. A. Ginsel, J. J. Onderwater, J. F. Leeuwenberg, and W. A. Buurman. Evidence for endocytosis of E-selectin in human endothelial cells. Eur. J. Immunol. 22:2519–2526 (1992).CrossRefGoogle Scholar
  31. 31.
    P. I. Chuang, B. A. Young, R. R. Thiagarajan, C. Cornejo, R. K. Winn, and J. M. Harlan. Cytoplasmic domain of E-selectin contains a non-tyrosine endocytosis signal. J. Biol. Chem. 272:24813–24818 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alexei A. BogdanovJr.
    • 1
  • Charles P. Lin
    • 2
  • Hye-Won Kang
    • 1
  1. 1.S2-804, Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA

Personalised recommendations