Pharmaceutical Research

, Volume 24, Issue 5, pp 955–962 | Cite as

Modified Paclitaxel-loaded Nanoparticles for Inhibition of Hyperplasia in a Rabbit Arterial Balloon Injury Model

Research Paper



This study tested the possibility of localized intravascular infusion of positive charged paclitaxel-loaded nanoparticles (NPs) to better prevent neointimal formation in a rabbit carotid artery injury model.

Materials and Methods

NPs were prepared by oil–water emulsion/solvent evaporation technique using biodegradable poly (lactide-co-glycolide) (PLGA). A cationic surfactant, didodecyldimethylammonium bromide (DMAB), was absorbed on the NP surface by electrostatic attraction between positive and negative charges. NPs were characterized in such aspects as size, surface morphology, surface charges as well as in vitro drug release profile. Balloon injured rabbit carotid arteries were treated with single infusion of paclitaxel-loaded NP suspension and observed for 28 days. The inhibitory effects of NPs on neointima formation were evaluated as end-point.


NPs showed spherical shape with a diameter ranging from 200 to 500 nm. Negatively charged PLGA NPs shifted to positive after the DMAB modification. The in vitro drug release profile showed a biphasic release pattern. Morphometric analyses on the retrieved artery samples revealed that the inhibitory effect of intima proliferation was dose-dependent. At a concentration of 30 mg ml−1, NP infusion completely inhibited intima proliferation in a rabbit vascular injury model.


Paclitaxel-loaded NPs with DMAB modification were proven an effective means of inhibiting proliferative response to vascular injury in a rabbit model.

Key words

DMAB nanoparticle paclitaxel restenosis surface modification 



common carotid artery




drug-eluting stent


didodecyldimethylammonium bromide


entrapment efficiency


hematoxylin & eosin


high performance liquid chromatography






polyvinyl alcohol


scanning electron microscopy


transmission electronic microscopy


vascular smooth muscle cell


  1. 1.
    J. A. Bittl. Advances in coronary angioplasty. N. Engl. J. Med. 335:1290–1302 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    U. Westedt, L. Barbu-Tudoran, A. K. Schaper, M. Kalinowsk, H. Alfke, and T. Kissel. Deposition of nanoparticles in the arterial vessel by porous balloon catheters: localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSci in vitro(4):1–6 (2004).Google Scholar
  3. 3.
    G. S. Mintz, J. J. Popma, A. D. Pichard, K. M. Kent, L. F. Satler, C. Wong, M. K. Hong, J. A. Kovach, and M. B. Leon. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 94(1):35–43 (1996).PubMedGoogle Scholar
  4. 4.
    T. Kimura, S. Kaburagi, T. Tamura, H. Yokoi, Y. Nakagawa, H. Yokoi, N Hamasaki, H. Nosaka, M. Nobuyoshi, G. S. Mintz, J. J. Popma, and M. B. Leon. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 96(2):475–483 (1997).PubMedGoogle Scholar
  5. 5.
    H. Hanke, T. Strohschneider, M. Oberhoff, E. Betz, and K. R. Karsch. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ. Res. 67(3):651–659 (1990).PubMedGoogle Scholar
  6. 6.
    Y. Shi, J. E. O’Brien, L. Ala-Kokko, W. Chung, J. D. Mannion, and A. Zalewski. Origin of extracellular matrix synthesis during coronary repair. Circulation 95(4):997–1006 (1997).PubMedGoogle Scholar
  7. 7.
    C. Hehrlein, C. Gollan, K. Donges, J. Metz, R. Riessen, P. Fehsenfeld, E. von Hodenberg, and W. Kubler. Low -dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 92(6):1570–1575 (1995).PubMedGoogle Scholar
  8. 8.
    E. Regar, G. Sianos, and P. W. Serruys. Stent development and local drug delivery. Br. Med. Bull. 59(1):227–248 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Grube, S. Silber, K. E. Hauptmann, R. Mueller, L. Buellesfeld, U. Gerckens, and M. E. Russell. TAXUS I: six- and 12-month results from a randomized, double-blind trial on a slow-release paclitaxeleluting stent for de novo coronary lesions. Circulation 107:38–42 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    S. J. Park, W. H. Shim, D. S. Ho, A. E. Raizner, S. W. Park, M. K. Hong, C. W. Lee, D. Choi, Y. Jang, R. Lam, N. J. Weissman, and G. S. Mintz. A paclitaxel-eluting stent for the prevention of coronary restenosis. N. Engl. J. Med. 348:1537–1545 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    J. W. Moses, M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Banai, M. Chorny, S. D. Gertz, I. Fishbein, J. Gao, L. Perez, G. Lazarovichi, A. Gazit, A. Levitzki, and G. Golomb. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials 26:4898–4901 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Wolinsky and S. N. Thung. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J. Am. Coll. Cardiol. 15(2):475–481 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Scheller, U. Speck, C. Abramjuk, U. Bernhardt, M. Böhm, and G. Nickenig. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110(7):810–814 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    D. W. Muller, E. J. Topol, G. D. Abrams, K. P. Gallagher, and S. G. Ellis. Intramural methotrexate therapy for the prevention of neointimal thickening after balloon angioplasty. J. Am. Coll. Cardiol. 20(2):460–466 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    T. L. Lambert, V. Dev, E. Rechavia, J. S. Forrester, F. Litvack, and N. L. Eigler. Localized arterial wall drug delivery from a polymer-coated removable metallic stent: kinetics, distribution, and bioactivity of forskolin. Circulation 90(2):1003–1011 (1994).PubMedGoogle Scholar
  17. 17.
    F. Valero, M. Hamon, C. Fournier, T. Meurice, B. Flautre, E. Van Belle, J. M. Lablanche, B. Gosselin, C. Bauters, and M. Bertrand. Intramural injection of biodegradable microspheres as a local drug-delivery system to inhibit neointimal thickening in a rabbit model of balloon angioplasty. J. Cardiovasc. Pharmacol. 31(4):513–519 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    R. L. Wilensky, K. L. March, I. Gradus-Pizlo, D. Schauwecker, M. B. Michaels, J. Robinson, K. Carlson, and D. R. Hathaway. Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am. Heart J. 129(5):852–859 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    L. A. Guzman, V. Labhasetwar, C. Song, Y. Jang, A. M. Lincoff, R. Levy, and E. J. Topol. Local intraluminal infusion of biodegradable polymeric nanoparticles: a novel approach for prolonged drug delivery after balloon angioplasty. Circulation 94:1441–1448 (1996).PubMedGoogle Scholar
  20. 20.
    C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W. R. Humphrey, R. J. Shebuski, and R. J. Levy. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43:197–212 (1997).CrossRefGoogle Scholar
  21. 21.
    V. Labhasetwar, C. Song, and R. J. Levy. Nanoparticle drug delivery system for restenosis. Adv. Drug Deliv. Rev. 24:63–85 (1997).CrossRefGoogle Scholar
  22. 22.
    W. R. Humphrey, L. A. Erickson, C. A. Simmons, J. L. Northrup, D. G. Wishka, J. Morris, V. Labhasetwar, C. Song, R. J. Levy, and R. J. Shebuski. The effect of intramural delivery of polymeric nanoparticles loaded with the anti-proliferative 2-aminochromone U-86983 on neointimal hyperplasia development in balloon-injured porcine coronary. Adv. Drug Deliv. Rev. 24:87–108 (1997).CrossRefGoogle Scholar
  23. 23.
    C. Song, V. Labhasetwar, X. Cui, T. Underwood, and R. J. Levy. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J. Control. Release 54(2):201–211 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    V. Labhasetwar, C. Song, W. Humphrey, R. Shebuski, and R. J. Levy. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J. Pharm. Sci. 87(10):1229–1234 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    K. R. Kamath, J. J. Barry, and K. M. Miller. The Taxus™ drug-eluting stent: a new paradigm in controlled drug delivery. Adv. Drug Deliv. Rev. 58(3):412–436 (2006).PubMedCrossRefGoogle Scholar
  26. 26.
    D. W. Kim, J. S. Kwon, Y. G. Kim, M. S. Kim, G. S. Lee, T. J. Youn, and M. C. Cho. Novel oral formulation of paclitaxel inhibits neointimal hyperplasia in a rat carotid artery injury model. Circulation 109:1558–1563 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    T. K. Nasser, R. L. Wilensky, K. Mehdi, and K. L. March. Microparticle deposition in periarterial microvasculature and intramural dissections after porous balloon delivery into atherosclerotic vessels: quantitation and localization by confocal scanning laser microscopy. Am. Heart J. 131(5):892–898 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    J. J. Rome, V. Shayani, M. Y. Flugelman, K. D. Newman, A. Farb, R. Virmani, and D. A. Dichek. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler. Thromb. 14:148–161 (1994).PubMedGoogle Scholar
  29. 29.
    J. M. Anderson and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    I. Gradus-Pizlo, R. L. Wilensky, K. L. March, N. Fineberg, M. Michaels, G. E. Sandusky, and D. R. Hathaway. Local delivery of biodegradable microparticles containing colchicine or a colchicine analogue: effects on restenosis and implications for catheter-based drug delivery. J. Am. Coll. Cardiol. 26(6):1549–1557 (1995).PubMedCrossRefGoogle Scholar
  31. 31.
    V. Dev, N. Eigler, M. C. Fishbein, Y. Tian, A. Hickey, E. Rechavia, J. S. Forrester, and F. Litvack. Sustained local drug delivery to the arterial wall via biodegradable microspheres. Catheter. Cardiovasc. Diagn. 41(3):324–332 (1997).CrossRefGoogle Scholar
  32. 32.
    L. A. M. Rupert, D. Hoekstra, and B. F. N. Engberts. Fusogenic behavior of didodecyldimethylammonium bromide bilayer vesicles. J. Am. Chem. Soc. 107:2628–2631 (1985).CrossRefGoogle Scholar
  33. 33.
    H. Suh, B. Jeong, R. Rathi, and S. W. Kim. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethyleneoxide)-poly(lactide/glycolide) nanospheres. J. Biomed. Mater. Res. 42:331–338 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    J. K. Jackson, K. C. Skinner, L. Burgess, T. Sun, W. L. Hunter, and H. M. Burt. Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm. Res. 19:411–417 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    N. Kunou, Y. Ogura, M. Hashizoe, Y. Honda, S. H. Hyon, and Y. Ikada. Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits. J. Control. Release 37:143–150 (1995).CrossRefGoogle Scholar
  36. 36.
    C. G. Pitt, M. M. Gratzl, A. R. Jeffcoat, R. Zweidinger, and A. Schindler. Sustained drug delivery systems. II. Factors affecting release rates from poly(ɛ-caprolactone) and related biodegradable polymers. J. Pharm. Sci. 68:1534–1538 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    M. S. Hora, R. K. Rana, J. H. Nunberg, T. R. Tice, R. M. Gilley, and M. E. Hudson. Release of human serum albumin from retinitis with intravitreal injection of liposome encapsulated poly(lactide-co-glycolide) microspheres. Pharm. Res. 7:1190–1194 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Yasukawa, H. Kimura, Y. Tabata, and Y. Ogura. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv. Drug Deliv. Rev. 52:25–36 (2001).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Panyam, M. M. Dali, S. K. Sahoo, W. Ma, S. S. Chakravarthi, G. L. Amidon, R. J. Levy, and V. Labhasetwar. Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. J. Control. Release 92:173–187 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Manil, J. Davin, C. Duchenne, C. Kubiak, J. Foidart, P. Couvreur, and P. Mahieu. Uptake of nanoparticles by rat glomerular mesangial cells in vivo and in vitro. Pharm. Res. 11:1160–1167 (1994).PubMedCrossRefGoogle Scholar
  41. 41.
    J. J. Wright and L. Illum. Active targeting of microcapsules and microspheres to specific regions. In M. Donbrow (ed.), Microcapsules and Nanoparticles in Medicine and Pharmacy, CRC Press, Boca Raton, FL, 1992, pp. 282–293.Google Scholar
  42. 42.
    J. You, M. Kamihira, and S. Iijima. Surfactant-mediated gene transfer for animal cells. Cytotechnology 25:45–52 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.The Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
  2. 2.Tianjin Medical UniversityTianjinChina

Personalised recommendations