Pharmaceutical Research

, Volume 24, Issue 5, pp 1014–1025 | Cite as

AAPS-FDA Workshop White Paper: Microdialysis Principles, Application and Regulatory Perspectives

  • Chandra S. Chaurasia
  • Markus Müller
  • Edward D. Bashaw
  • Eva Benfeldt
  • Jan Bolinder
  • Ross Bullock
  • Peter M. Bungay
  • Elizabeth C. M. DeLange
  • Hartmut Derendorf
  • William F. Elmquist
  • Margareta Hammarlund-Udenaes
  • Christian Joukhadar
  • Dean L. KelloggJr.
  • Craig E. Lunte
  • Carl Henrik Nordstrom
  • Hans Rollema
  • Ronald J. Sawchuk
  • Belinda W. Y. Cheung
  • Vinod P. Shah
  • Lars Stahle
  • Urban Ungerstedt
  • Devin F. Welty
  • Helen Yeo
Research Paper

Abstract

Many decisions in drug development and medical practice are based on measuring blood concentrations of endogenous and exogenous molecules. Yet most biochemical and pharmacological events take place in the tissues. Also, most drugs with few notable exceptions exert their effects not within the bloodstream, but in defined target tissues into which drugs have to distribute from the central compartment. Assessing tissue drug chemistry has, thus, for long been viewed as a more rational way to provide clinically meaningful data rather than gaining information from blood samples. More specifically, it is often the extracellular (interstitial) tissue space that is most closely related to the site of action (biophase) of the drug. Currently microdialysis (μD) is the only tool available that explicitly provides data on the extracellular space. Although μD as a preclinical and clinical tool has been available for two decades, there is still uncertainty about the use of μD in drug research and development, both from a methodological and a regulatory point of view. In an attempt to reduce this uncertainty and to provide an overview of the principles and applications of μD in preclinical and clinical settings, an AAPS-FDA workshop took place in November 2005 in Nashville, TN, USA. Stakeholders from academia, industry and regulatory agencies presented their views on μD as a tool in drug research and development.

Key words

clinical pharmacology microdialysis recovery regulatory aspects 

References

  1. 1.
    U. Ungerstedt and C. Pycock. Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 30:44–55 (1974).PubMedGoogle Scholar
  2. 2.
    E. C. M. De Lange, A. G. De Boer, and D. D. Breimer. Methodological issues in microdialysis sampling for pharmacokinetic studies. Eds. R. Sawchuk and W. F. Elmquist. Adv. Drug Deliv. Rev. 45:125–148 ( 2000).Google Scholar
  3. 3.
    W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies. Pharm. Res. 14:267–288 (1997).CrossRefGoogle Scholar
  4. 4.
    C. S. Chaurasia. In vivo microdialysis sampling: theory and applications. Biomed. Chromatogr. 13:317–332 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    E. C. M. De Lange, and M. Danhof: Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin. Pharmacokinet. 41:691–703, 2002.PubMedCrossRefGoogle Scholar
  6. 6.
    M. I. Davies, J. D. Cooper, S. S. Desmond, C. E. Lunte, and S. M. Lunte. Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 45:169–88 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    E. C. M. De Lange, M. Danhof, A. G. De Boer, and D. D. Breimer. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res. Rev. 25:27–49 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    U. Ungerstedt. Microdialysis—principles and applications for studies in animals and man. J. Intern. Med. 230:365–373 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    E. C. M. De Lange, A. H. de Bock, A. G. de Boer Schinkel, and D. D. Breimer. BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm. Res. 15:1657–1665 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    P. M. Bungay and R. L. Dedrick, E. Fox, and F. M. Balis. Probe calibration in transient microdialysis in vivo. Pharm. Res. 18:361–366 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    A. D. Smith and J. B. Justice Jr. The effect of inhibition of synthesis, release, metabolism and uptake on the microdialysis extraction fraction of dopamine. J. Neurosci. Methods 54:75–82 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    E. C. M. De Lange, P. G. M. Ravenstijn, D. Groenendaal, and T. S. van Steeg. Towards the prediction of CNS drug effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J. 7:E532–543, (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Ederoth, K. Tunblad, R. Bouw, J. C. F. Lundberg, U. Ungerstedt, C. H. Nordström, and M. Hammarlund-Udenaes. Blood–brain barrier transport of morphine in patients with severe brain trauma. Brit. J. Clin. Pharmacol. 57:427–435 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    L. B. Stolle, M. Arpi, P. Holmberg-Jorgensen, P. Riegels-Nielsen, and J. Keller. Application of microdialysis to cancellous bone tissue for measurement of gentamicin levels. J. Antimicrob. Chemother. 54:263–265 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Zhu, B. W. Cheung, L. L. Cartier, G. S. Giebink, and R. J. Sawchuk. Simultaneous intravenous and intramiddle-ear dosing to determine cefditoren influx and efflux clearances in middle ear fluid in freely moving chinchillas. J. Pharm. Sci. 92:1947–1956 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    S. R. Skilling, D. H. Smullin, A. J. Beitz, and A. A. Larson. Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J. Neurochem. 51:127–132, (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    B. S. Anand, H. Atluri, and A. K. Mitra. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int. J. Pharm. 28:79–88 (2004).CrossRefGoogle Scholar
  18. 18.
    M. Qian, W. West, J. T. Wu, B. Lu, and D. D. Christ. Development of a dog microdialysis model for determining synovial fluid pharmacokinetics of anti-arthritis compounds exemplified by methotrexate. Pharm. Res. 20:605–10 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Solligård, I. S..Juel, K. Bakkelund, P.Jynge, K. E. Tvedt H. Johnsen, P. Aadahl, and J. E. Grønbech. Gut luminal microdialysis of glycerol as a marker of intestinal ischemic injury and recovery. Crit. Care Med. 33:2278–2285 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    J. L. Krup and C. M. Bernards. Pharmacokinetics of intrathecal oligodeoxynucleotides. Anesthesiology. 100:315–322 (2004).CrossRefGoogle Scholar
  21. 21.
    Y. Wang and R. J. Sawchuk. Zidovudine transport in the rabbit brain during intravenous and intracerebroventricular infusion. J. Pharm. Sci. 84:871–876 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Riese, S. Boecker, W. Hohenberger, P. Klein, and W. Haupt. Microdialysis: a new technique to monitor perioperative human peritoneal mediator production. Surg. Infect. 4:11–5 (2003).CrossRefGoogle Scholar
  23. 23.
    M. Brunner and M. Muller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol. 58: 227-234 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Galvan, Y. Smith, and T. Wichmann. Continuous monitoring of intracerebral glutamate levels in awake monkeys using microdialysis and enzyme fluorometric detection. J.Neurosci. Methods. 126:175–85 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    P. F. Morrison, P. M. Bungay, J. K. Hsiao, I. N. Mefford,K. H. Dykstra, and R. L. Dedrick. Quantitative microdialysis. In: T. E. Robinson, J. B. Justice, Jr. (eds.), Microdialysis in the Neurosciences. Elsevier, N.Y., 1996, pp. 47–80.Google Scholar
  26. 26.
    K. C. Chen, M. Höistad, J. Kehr, J., K. Fuxe, and C. Nicholson. Theory relating in vitro and in vivo microdialysis of one or two probes. J. Neurochem. 81:108–121 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    P. M. Bungay, P. F. Morrison, R. L. Dedrick, V. I. Chefer, A. Zapata. Principles of Quantitative Microdialysis. In B. H. C. Westerink, T. I. F. H. Cremers (eds.) Handbook of Microdialysis, Vol. 16: Methods, Applications and Perspectives. Elsevier, N.Y. (in press).Google Scholar
  28. 28.
    P. Lönnroth, P A. Jansson, and U. Smith. A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol. 253(2 pt 1):E228–E231(1987).PubMedGoogle Scholar
  29. 29.
    R. J. Olson and J. B. Justice, Jr. Quantitative microdialysis under transient conditions. Anal. Chem. 65:1017–1022 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. S. L. Wang, and R. J. Sawchuk. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm. Res. 10:1411–1419 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M. R. Bouw, M. Hammarlund-Udenaes. Methodological aspects of the use of a calibrator in in vivo microdialysis—further development of the retrodialysis method. Pharm. Res. 15:1673–1679 (1998).PubMedCrossRefGoogle Scholar
  32. 32.
    L. Strindberg and P. Lönnroth. Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand. J. Clin. Lab. Invest. 60:205–211 (2000).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Yang, J. L. Peters, and A. C. Michael. Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J. Neurochem. 71:684–692 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    P. M. Bungay, P. Newton-Vinson, W. Isele, P. A. Garris, and J. B. Justice, Jr. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J. Neurochem. 86:932–946 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    K. C. Chen. Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J. Theor. Biol. 238:863–881 (2006).PubMedCrossRefGoogle Scholar
  36. 36.
    K. H. Dystra, J. K. Hsiao,P. F. Morrison,P. M. Bungay, I. N. Mefford, M. M. Scully, and R. L. Dedrick. Quantitative examination of tissue concentration profiles associated with microdialysis. J. Neurochem. 58:931–940 (1992).CrossRefGoogle Scholar
  37. 37.
    M. Höistad, K. C. Chen, C. Nicholson, K. Fuxe, and J. Kehr. Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. J. Neurochem. 81:80–93 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    P. Lönnroth and L. Strindberg. Validation of the ‘internal reference technique’ for calibrating microdialysis catheters in situ. Acta. Physiol. Scand. 153:375–80 (1995).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Müller. Science, medicine and the future: microdialysis. BMJ 324:588–591 (2002).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Müller. Microdialysis in clinical drug delivery studies. Adv. Drug. Deliv. Rev. 45:255–269 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    C. Kennergren, V. Mantovani, L. Strindberg, E. Berglin, A. Hamberger, P. Lönnroth. Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am. J. Physiol., Endocrinol. Metabol. 284:E788–94 (2003).Google Scholar
  42. 42.
    B. M. Bellander, E. Cantais E, P. Enblad et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 30(12):2166–2169 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    C. M. Tolias and M. R. Bullock. Critical Appraisal of Neuroprotection T1 Injury: What Have We Learned? NeuroRx 1:71–79 (2004).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Müller, A. dela Pena, and H. Derendorf. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob. Agents Chemother. 48:1441–53 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Brunner, H. Derendorf, and M. Müller. Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr. Opin. Pharmacol. 5:495–499 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Brunner and M. Müller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol. 58:227–234 (2002)PubMedCrossRefGoogle Scholar
  47. 47.
    V. P. Shah, G. L. Flynn, A Yacobi, H. I. Maibach, C. Bon, N. M. Fleischer, T. J. Franz, S. A. Kaplan, J. Kawamoto, L. J. Lesko, J. P. Marty, L. K. Pershing, H. Schaefer, J. A. Sequeira, S. P. Shrivastava, and W. J. Wilkin. Bioequivalence of topical dermatological dosage forms—methods of evaluation of bioequivalence. Pharm. Res. 15: 167–171 (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Kreilgaard, M. J. Kemme, J. Burggraff, R. C. Schoemaker, and A. F. Cohen. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm. Res. 18:593–599, (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Groth L, P. García Ortiz, and E. Benfeldt. Microdialysis methodology for sampling in the skin. In: J Serup, GBE Jemec, and G Grove (eds.), Handbook of Non-Invasive Methods and the Skin. CRC, Boca Raton: 2006, pp. 443–454.Google Scholar
  50. 50.
    E. Benfeldt, J. Serup, and T. Menne. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br. J. Dermatol. 140:739–748 (1999).PubMedCrossRefGoogle Scholar
  51. 51.
    S. McDonald and C. Lunte. Determination of the dermal penetration of esterom components using microdialysis sampling. Pharm. Res. 20:1827–1834 (2003).PubMedCrossRefGoogle Scholar
  52. 52.
    E. Benfeldt, S. Honoré Hansen, A. Vølund, T. Menné, and V. P. Shah. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermato-pharmacokinetic method. J. Invest. Dermatol. July 27(2006) (in press).Google Scholar
  53. 53.
    P. Lönnroth. Microdialysis in adipose tissue and skeletal muscle. Horm. Metab. Res. 29:344–346 (1997).PubMedGoogle Scholar
  54. 54.
    F. Magkos and L. S. Sidossis. Methodological approaches to the study of metabolism across individual tissues in man. Curr. Opin. Clin. Nutr. Metab. Care 8:501–510 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    V. Qvisth, E. Hagström-Toft, S. Enoksson, R. S. Sherwin, S Sjöberg, and J. Bolinder. Combined hyperinsulinemia, but not hyperinsulinemia alone, suppress human skeletal muscle lipolytic activity in vivo. J. Clin. Endocrinol. Metab. 89:4693–4700 (2004).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Bolinder, U. Ungerstedt, and P. Arner. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet 342:1080–1085 (1993).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Maran, C Crepaldi, A. Tiengo, G. Grassi, E. Vitali, G. Pagano, S. Bistoni, G. Calabrese, F. saneusanio, F. Leonetti, M. Ribaudo, U. Di Mario, G. Anuzzi, S. Genovese, G. Riccardi, M. previti, D. Cucinotta, F. Giorgino, A. Bellomo, R. Giorgino, A. Poscia, and M Varalli. Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter analysis. Diabetes Care 25: 347–352 (2002).PubMedCrossRefGoogle Scholar
  58. 58.
    D. C. Klonoff. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 28:1231–1239 (2005).PubMedCrossRefGoogle Scholar
  59. 59.
    D. L. Kellogg Jr., Y. Liu, P. E. Pergola, and L. J. Roman. In Vivo measurement of nitric oxide concentrations in humans. FASEB J. 13:A104 (1999).Google Scholar
  60. 60.
    (CMA Cerebral Tissue Monitoring System, http://www.microdialysis.se/USA/PDF/510(k)%20Summary.pdf (accessed 10/23/06)
  61. 61.
    Physicians’ Desk Reference (2006) Zonegran® clinical pharmacology FDA-approved label. http://www.thomsonhc.com/pdrel/librarian/PFDefaultActionId/pdrcommon.IndexSearchTranslator), (accessed 10/23/06)
  62. 62.
    Catalyst pharmaceuticals partners files investigational new drug application for CPP-109 to treat cocaine addiction (2005) http://www.bnl.gov/CTN/GVG/CPP.asp), (accessed 10/23/06)
  63. 63.
    Anti-infective Drug Advisory Committee Meeting (1998). Guidance documents on developing antimicrobial drugs: general considerations and individual indications. Gaithersburg, MD, July 31 http://www.fda.gov.lilac.une.edu/ohrms/dockets/ac/cder98t.htm#Anti-InfectiveDrugs
  64. 64.
    EMEA (2006). 4.1.2. In vivo studies in: guideline on the non-clinical investigation of the dependence potential of medicinal products. European Medicines Agency, Evaluation of Medicines for Human Use. http://www.emea.eu.int/pdfs/human/swp/9422704en.pdf) (accessed 10/23/06)
  65. 65.
    FDA (2004). Innovation or stagnation? Challenge and opportunity on the Critical Path to new medical products. US Department of Health and Human Services, Food and Drug Administration.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chandra S. Chaurasia
    • 1
  • Markus Müller
    • 2
  • Edward D. Bashaw
    • 3
  • Eva Benfeldt
    • 4
  • Jan Bolinder
    • 5
  • Ross Bullock
    • 6
  • Peter M. Bungay
    • 7
  • Elizabeth C. M. DeLange
    • 8
  • Hartmut Derendorf
    • 9
  • William F. Elmquist
    • 10
  • Margareta Hammarlund-Udenaes
    • 11
  • Christian Joukhadar
    • 2
  • Dean L. KelloggJr.
    • 12
  • Craig E. Lunte
    • 13
  • Carl Henrik Nordstrom
    • 14
  • Hans Rollema
    • 15
  • Ronald J. Sawchuk
    • 10
  • Belinda W. Y. Cheung
    • 10
  • Vinod P. Shah
    • 16
  • Lars Stahle
    • 17
  • Urban Ungerstedt
    • 18
  • Devin F. Welty
    • 19
  • Helen Yeo
    • 20
  1. 1.Division of BioequivalenceOffice of Generic Drugs, Food and Drug AdministrationRockvilleUSA
  2. 2.Department of Clinical PharmacologyMedical University ViennaViennaAustria
  3. 3.Division of Clinical Pharmacology III, Office of Clinical PharmacologyUS-FDASilver SpringUSA
  4. 4.Department of DermatologyUniversity of CopenhagenCopenhagenDenmark
  5. 5.Deptartment of MedicineKarolinska University Hospital Huddinge, Karolinska InstitutetStockholmSweden
  6. 6.Medical College of VirginiaRichmondUSA
  7. 7.Division of Bioengineering and Physical ScienceOffice of Research Services, NIHBethesdaUSA
  8. 8.LACDRLeidenThe Netherlands
  9. 9.Department of PharmaceuticsUniversity of FloridaGainesvilleUSA
  10. 10.Department of PharmaceuticsUniversity of MinnesotaMinneapolisUSA
  11. 11.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  12. 12.Department of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioUSA
  13. 13.Department of ChemistryUniversity of KansasLawrenceUSA
  14. 14.Department of NeurosurgeryUniversity HospitalLundSweden
  15. 15.Department NeurosciencePfizer Global ResearchGrotonUSA
  16. 16.Pharmaceutical FederationNorth PotomacUSA
  17. 17.Astra ZenecaSödertäljeSweden
  18. 18.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  19. 19.Pharmacokinetics and Drug MetabolismAllergan Inc.IrvineUSA
  20. 20.Departnment of Drug Metabolism and PharmacokineticsRoche Palo AltoUSA

Personalised recommendations