Pharmaceutical Research

, Volume 24, Issue 5, pp 1007–1013 | Cite as

Monodisperse Liquid-filled Biodegradable Microcapsules

  • Cory BerklandEmail author
  • Emily Pollauf
  • Neel Varde
  • Daniel W. Pack
  • Kyekyoon (Kevin) KimEmail author
Short Communication



Encapsulation of liquids into biodegradable polymer microcapsules has been a challenging task due to production limitations stemming from solution viscosity, phase stabilization, molecular localization, and scalable production. We report an extension of Precision Particle Fabrication (PPF) technology for the production of monodisperse liquid-filled microcapsules containing an oil or aqueous core and contrast these results to double-walled microspheres.

Materials and Methods

PPF technology utilizes a coaxial nozzle to produce a liquid core jet surrounded by a polymer annular jet, which is further encompassed by a non-solvent carrier stream, typically 0.5% wt/vol polyvinyl alcohol in water. Jet diameters are controlled by the volumetric flow rate of each phase. The compound jet is then disrupted into uniform core/shell droplets via a controllable acoustic wave and shell material is hardened by solvent extraction.


Monodisperse polymeric microcapsules demonstrated a narrow size distribution and the formation of a continuous shell leading to efficient encapsulation of various liquid cores. The intermingling of core and shell phases and the localization of different molecular probes (fluorescent dyes and fluorescently labeled proteins) to the core or shell phase provided additional evidence of phase separation and molecular partitioning, respectively. We also demonstrate the pulsatile release of bovine serum albumin encapsulated in an aqueous core.


PPF technology provided exceptional control of the overall size and shell thickness of microcapsules filled with various types of oil or water. This technique may enable advanced delivery profiles of pharmaceuticals or nutraceuticals.

Key words

controlled release drug delivery microcapsule monodisperse poly(lactide-co-glycolide) 



Scanning electron micrographs were attained at the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439. Special thanks to Dr. Balaji Narasimhan for providing polyanhydrides and to Guilford Pharmaceuticals for the gift of Polilactofate®.


  1. 1.
    L. Zha, Y. Zhang, W. Yang, and S. Fu. Monodisperse temperature-sensitive microcontainers. Adv. Mater. 14:1090–1092 (2002).CrossRefGoogle Scholar
  2. 2.
    A. Sanchez, R. K. Gupta, M. J. Alonso, G. R. Siber, and R. Langer. Pulsed controlled-release system for potential use in vaccine delivery. J. Pharm. Sci. 85:547–552 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Berkland, M. King, A. Cox, K. Kim, and D. Pack. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release 82:137–147 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Berkland, M. Kipper, K. Kim, B. Narasimhan, and D. Pack. Microsphere size, precipitation kinetics, and drug distribution control drug release from biodegradable polyanhydride microspheres. J. Control. Release 94:129–141 (2003).CrossRefGoogle Scholar
  5. 5.
    J. H. Moon, G. R. Yi, S. Yang, D. J. Pine, and S. B. Park. Electrospray-assisted fabrication of uniform photonic balls. Adv. Mater. 16:605–609 (2004).CrossRefGoogle Scholar
  6. 6.
    S. M. Chia, et al. Multi-layered microcapsules for cell encapsulation. Biomaterials 23:849–856 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Chen, M. Chen, T. Serizawa, and M. Akashi. In situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv. Mater. 10:1122–1125 (1998).CrossRefGoogle Scholar
  8. 8.
    L. Martin-Banderas, et al. Towards high-throughput production of uniformly encoded microparticles. Adv. Mater. 18:559–564 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Takeuchi, P. Garstecki, D. B. Weibel, and G. M. Whitesides. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17:1067–1073 (2005).CrossRefGoogle Scholar
  10. 10.
    C. Berkland, D. W. Pack, and K. Kim. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(d,l-lactide-co-glycolide). Biomaterials 25:5649–5658 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    I. G. Loscertales, et al. Micro/nano encapsulaton via electrified coaxial liquid jets. Science 295:1695–1698 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y. Guan, S. Yang, J. Xu, and C. C. Han. Fabrication of hollow capsule based on hydrogen bonding. Adv. Mater. 15:832–835 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Zhang, G. Gao, C.-Q. Li, and F.-Q. Liu. Titania-coated polystyrene hybrid micro-balls prepared with miniemulsion polymerization. Langmuir 20:1420–1424 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Berkland, K. Kim, and D. W. Pack. PLG microsphere size controls drug release rate through several competing factors. Pharm. Res. 20:1055–1062 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    C. Berkland, K. Kim, and D. W. Pack. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Release 73:59–74 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Berkland, E. Pollauf, D. W. Pack, and K. K. Kim. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control. Release 96:101–111 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    E. J. Pollauf, C. Berkland, K. K. Kim, and D. W. Pack. In vitro degradation of polyanhydride/polyester core-shell double-wall microspheres. Int. J. Pharm. 301:294–303 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    E. J. Pollauf, K. K. Kim, and D. W. Pack. Small-molecule release from poly(D,L-lactide)/poly(D,L-lactide-co-glycolide) composite microparticles. J. Pharm. Sci. 94:2013–2022 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    E. J. Pollauf and D. W. Pack. Use of thermodynamic parameters for design of double-walled microsphere fabrication methods. Biomaterials 27:2898–2906 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    J. L. Guttman, C. D. Hendricks, K. Kim, and R. J. Turnbull. An investigation of the effects of system parameters on the production of hollow hydrogen droplets. J. Appl. Phys. 50:4139–4142 (1979).CrossRefGoogle Scholar
  21. 21.
    K. Kim, K. Y. Jang, and R. S. Upadhye. Hollow silica spheres of controlled size and porosity by sol–gel processing. J. Am. Ceram. Soc. 74:1987–1992 (1991).CrossRefGoogle Scholar
  22. 22.
    N. K. Kim, K. Kim, D. A. Payne, and R. S. Upadhye. Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing. J. Vac. Sci. Technol. A 7:1181–1184 (1989).CrossRefGoogle Scholar
  23. 23.
    L. Rayleigh. Proc. Lond. Math. Soc. 10:4 (1879).CrossRefGoogle Scholar
  24. 24.
    K. J. Pekarek, J. S. Jacob, and E. Mathiowitz. One-step preparation of double-walled microspheres. Adv. Mater. 6:684–687 (1994).CrossRefGoogle Scholar
  25. 25.
    M. J. Kipper, E. Shen, A. Determan, and B. Narasimhan. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials 23:4405–4412 (2002).PubMedCrossRefGoogle Scholar
  26. 26.
    N. A. Rahman and E. Mathiowitz. Localization of bovine serum albumin in double-walled microspheres. J. Control. Release 94:163–175 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Shi, et al. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release 89:167–177 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    A. C. Richards Grayson, et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2:767–772 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of IllinoisUrbanaUSA
  3. 3.Department of Chemical and Petroleum Engineering, Department of Pharmaceutical ChemistryLawrenceUSA
  4. 4.45 Everitt LaboratoryUrbanaUSA
  5. 5.Chemical and Biological Engineering, College of Engineering & Applied ScienceColoradoUSA

Personalised recommendations