Pharmaceutical Research

, Volume 24, Issue 4, pp 662–671 | Cite as

Involvement of Indoxyl Sulfate in Renal and Central Nervous System Toxicities During Cisplatin-induced Acute Renal Failure

  • Kazufumi Iwata
  • Hiroshi Watanabe
  • Takafumi Morisaki
  • Takanobu Matsuzaki
  • Takafumi Ohmura
  • Akinobu Hamada
  • Hideyuki SaitoEmail author
Research Paper


The purpose of the present study was to explore the involvement of indoxyl sulfate (IS) in nephrotoxicity and central nervous system (CNS) toxicity in cisplatin (CDDP)-treated rats.

Materials and Methods

Renal function was evaluated by serum creatinine and BUN levels. The IS levels in the serum, brain and kidney was monitored by high-performance liquid chromatography method. Body weight and rectal temperature were monitored. Real-time PCR analysis was performed to examine rPer2 mRNA expression.


Renal function deteriorated in a time-dependent manner after administration of CDDP. The concentration of IS in the serum, brain and kidney markedly increased 24–84 h after commencement of CDDP treatment. The observed increase in the levels of serum creatinine, BUN and IS was suppressed by concomitant administration of AST-120. Rectal temperature was significantly lowered 72–92  h after CDDP-treatment, which was partially restored by coadministration of AST-120. Moreover, the amplitude of rectal temperature rhythms was disrupted by treatment with CDDP. Circadian rhythm of rPer2 mRNA expression, a clock gene, in suprachiasmatic nucleus (SCN) and kidney was disturbed in CDDP-treated rats.


An increase in the IS level and the associated disturbance to the circadian rhythm are involved in the renal and CNS toxicities in CDDP-treatment.

Key words

acute renal failure AST-120 cisplatin indoxyl sulfate Per2 



indoxyl sulfate


acute renal failure


chronic renal failure


suprachiasmatic nucleus


central nervous system


zeitgeber time


period 2


serum creatinine



This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.


  1. 1.
    F. Ries and J. Klastersky. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 8:368–379 (1986).PubMedGoogle Scholar
  2. 2.
    J. Deng, Y. Kohda, H. Chiao, Y. Wang, X. Hu, S. M. Hewitt, T. Miyaji, P. McLeroy, B. Nibhanupudy, S. Li, and R. A. Star. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 60:2118–2128 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Ramesh, and W. B. Reeves. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110:835–842 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Lieberthal, V. Triaca, and J. Levine. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Adv. Physiol. Educ. 270:700–708 (1996).Google Scholar
  5. 5.
    T. Niwa, and M. Ise. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124:96–104 (1994).PubMedGoogle Scholar
  6. 6.
    D. H. Bueschkens, and M. E. Stiles. Escherichia coli variants for gas and indole production at elevated incubation temperatures. Appl. Environ. Microbiol. 48:601–605 (1984).PubMedGoogle Scholar
  7. 7.
    E. Banoglu, G. G. Jha, and R. S. King. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 26:235–240 (2001).PubMedGoogle Scholar
  8. 8.
    T. Miyazaki, M. Ise, H. Seo, and T., Niwa. Indoxyl sulfate increases the gene expression of TGF-beta 1, TIMP-1 and pro-α1(É) collagen in uremic rat kidneys. Kidney Inter., Suppl. 62:S15–S22 (1997).Google Scholar
  9. 9.
    T. Niwa, T. Nomura, S. Sugiyama, T. Miyazaki, S. Tsukushi, and S. Tsutsui. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Inter., Suppl. 62:S23–S28 (1997).Google Scholar
  10. 10.
    T. Miyazaki, I. Aoyama, M. Ise, H. Seo, and T. Niwa. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-β1 in uremic rat kidneys. Nephrol. Dial. Transplant. 15:1773–1781 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anion up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells. Kidney Int. 63:1671–1680 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    A. van Coevorden, J. Mockel, E. Laurent, M. Kerkhofs, M. L’Hermite-Baleriaux, C. Decoster, P. Neve, and E. van Cauter. Neuroendocrine rhythms and sleep in aging men. Am. J. Physiol. 260:E651–E661 (1991).PubMedGoogle Scholar
  13. 13.
    D. Gupta, A. N. Aggarwal, S. Chaganti, and S. K. Jindal. Reducing the number of daily measurements results in poor estimation of diurnal variation of peak expiratory flow in healthy individuals. J. Postgrad. Med. 46:262–264 (2000).PubMedGoogle Scholar
  14. 14.
    A. M. Richards, M. G. Nicholls, E. A. Espiner, H. Ikram, M. Cullens, and D. Hinton. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin. Exp. Hypertens., Part A Theory Pract. 8:153–166 (1986).CrossRefGoogle Scholar
  15. 15.
    W. E. Scales, A. J. Vander, M. B. Brown, and M. J. Kluger. Human circadian rhythms in temperature, trace metal, and blood variables. J. Appl. Physiol. 65:1840–1846 (1988).PubMedGoogle Scholar
  16. 16.
    M. H. Hastings. Central clocking. Trends Neurosci. 20:459–464 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Tei, H. Okamura, Y. Shigeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Kume, M. J. Zylka, S. Sriram, L. P. Shearman, D. R. Weaver, X. Jin, E. S. Maywood, M. H. Hastings, and S. M. Reppert. mCRY1 and mCRY2 are essential component of negative limb of the circadian clock feedback loop. Cell 98:193–205 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Yamazaki, R. Numano, M. Abe, A. Hida, R. Takahashi, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    A. B. Reddy, M. D. Field, E. S. Maywood, and M. H. Hastings. Differential resynchronization of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22:7326–7330 (2002).PubMedGoogle Scholar
  21. 21.
    A. C. Schoots, P. M. De Vries, R. Thiemann, W. A. Hazejager, S. L. Visser, and P. L. Oe. Biochemical and neurophysiological parameters in hemodialyzed patients with chronic renal failure. Clin. Chim. Acta 185:91–107 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    C. L. Robert, P. S. Richard, and C. Harold. The antitumor agent cis-Pt (NH3)2Cl2: distribution studies and dose calculation for 192mPt and 195mPt. J. Nucl. Med. 14:191–195 (1972).Google Scholar
  23. 23.
    I. J. Berman, and M. P. Mann. Seizures and transient cortical blindness associated with cis-platinum (II) diamminedichloride (PPD) therapy in a 30-year-old man. Cancer 45:764–766 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Verschraegen, C. A. Conrad, and W. K. Hong. Subacute encephalopathic toxicity of cisplatin. Lung Cancer 13:305–309 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Deguchi, M. Nakamura, Y. Tsutsumi, A. Suenaga, and M. Otagiri. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm. Drug Dispos. 24:345–355 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Deguchi, S. Ohtsuki, M. Otagiri, H. Takanaga, H. Asaba, S. Mori, and T. Terasaki. Major role of organic anion transporter 3 in the transport of indoxyl sulphate in the kidney. Kidney Int. 61:1760–1768 (2002).PubMedCrossRefGoogle Scholar
  27. 27.
    I. Aoyama, A. Enomoto, and T. Niwa. Effects of oral adsorbent on gene expression profile in uremic rat kidney: cDNA array analysis. Am. J. Kidney Dis. 41:S8–S14 (2003).PubMedGoogle Scholar
  28. 28.
    M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br. J. Pharmacol. 135:555–563 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    J. A. Boulant. Hypothalamic mechanisms in thermoregulation. Fed. Proc. 40:2843–2850 (1981).PubMedGoogle Scholar
  30. 30.
    T. Sato, S. Miyazaki, and S. Mohri. Effects of an oral adsorbent on cisplatin-induced nephropathy in rats. Nippon Jinzo Gakkai Shi 38:290–295 (1996).PubMedGoogle Scholar
  31. 31.
    S. Ohtsuki, H. Asaba, H. Takanaga, T. Deguchi, K. Hosoya, M. Otagiri, and T. Terasaki. Role of blood-brain barrier organic anion teansporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J. Neurochem. 83:57–66 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Hohenegger, H. Echsel, M. Vermes, and H. Raneburger. Influence of some uremic toxins on oxygen consumption of rats in vivo and in vitro. Adv. Exp. Med. Biol. 212:99–104 (1987).PubMedGoogle Scholar
  33. 33.
    D. I. Sessler. Mild perioperative hypothermia. N. Engl. J. Med. 336:1730–1737 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    R. W. Powell, D. L. Dyess, J. N. Collins, W. S. Roberts, E. J. Tacchi, A. N. Swafford Jr, J. J. Ferrara, and J. L. Ardell. Regional blood flow response to hypothermia in premature, newborn, and neonatal piglets. J. Pediatr. Surg. 34:193–198 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    N. F. Ruby, J. Dark, D. E. Burns, H. C. Heller, and I. Zucker. The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J. Neurosci. 22:357–364 (2002).PubMedGoogle Scholar
  36. 36.
    C. K. Song, and T. J. Bartness. CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity. Am. J. Physiol., Regul. Integr. Comp. Physiol. 281:R666–R672 (2001).Google Scholar
  37. 37.
    R. M. Buijs, S. J. Chun, A. Niijima, H. J. Romijn, and K. Nagai. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431:405–423 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    C. Kopp, U. Albrecht, B. Zheng, and I. Tobler. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16:1099–1106 (2002).PubMedCrossRefGoogle Scholar
  39. 39.
    K. L. Toh, C. R. Jones, Y. He, E. J. Eide, W. A. Hinz, D. M. Virshup, L. J. Ptacek, and Y. H. Fu. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Ohishi, K. Sakamoto, T. Okada, T. Nagase, and N. Ishida. Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci. Lett. 256:117–119 (1998).CrossRefGoogle Scholar
  41. 41.
    F. Damiola, N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kazufumi Iwata
    • 1
  • Hiroshi Watanabe
    • 1
  • Takafumi Morisaki
    • 1
  • Takanobu Matsuzaki
    • 1
  • Takafumi Ohmura
    • 1
  • Akinobu Hamada
    • 1
  • Hideyuki Saito
    • 1
    Email author
  1. 1.Department of PharmacyKumamoto University HospitalKumamotoJapan

Personalised recommendations