Pharmaceutical Research

, Volume 24, Issue 3, pp 471–479 | Cite as

Best Practices for Managing Quality and Safety of Foreign Particles in Orally Inhaled and Nasal Drug Products, and an Evaluation of Clinical Relevance

  • James Blanchard
  • James Coleman
  • Courtney Crim
  • Claire D’Abreu-Hayling
  • Lou Fries
  • Raouf Ghaderi
  • Barbara Haeberlin
  • Richard Malcolmson
  • Stanley Mittelman
  • Lee Nagao
  • Ilie Saracovan
  • Liuda Shtohryn
  • Caesar Snodgrass-Pilla
  • Mikael Sundahl
  • Ronald Wolff
Commentary

Keywords

Drug Product Active Pharmaceutical Ingredient Foreign Particle Routine Quality Control Total Daily Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Blanchard, J. Coleman, C. D’Abreu-Hayling, et al. Foreign particles testing in orally inhaled and nasal drug products. Pharm. Res. 21:2137–2147 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Kreher, W. Bootz, M. Niemann, L. Scaffidi, and M. Spallek. Foreign particle characterization in inhalation drug products: a critical comparison of methods and techniques. Proceedings of Respiratory Drug Delivery IX 2:373–376 (2004).Google Scholar
  3. 3.
    M. Niemann and O. Valet. Development of an integrated measurement system for foreign particles testing in OINDP based on IPAC-RS recommendations. Proceedings of Respiratory Drug Delivery Europe 181–184 (2005).Google Scholar
  4. 4.
    S. Pilewski, S. Ivatury, D. Browning, K. Vang, and T. Stephens. Determination of foreign particulate matter in metered dose inhalers (pMDI) by light obscuration. Proceedings of Respiratory Drug Delivery IX 3:629–631 (2004).Google Scholar
  5. 5.
    I. Saracovan, et al. Finding the balance between need and technology for the analysis of particles in the subvisible range. Microscope 53:51–53 (2005).Google Scholar
  6. 6.
    A. C. James, W. Stahlhofen, G. Rudolf, M. J. Egan, W. Nixon, P. Gehr, and J. K. Briant. The respiratory tract deposition model proposed by the ICRP task Group. Radiat. Prot. Dosim. 38:159–165 (1991).Google Scholar
  7. 7.
    S. Atis, B. Tutluoglu, E. Levent, et al. The respiratory effects of occupational polypropylene flock exposure. Eur. Respir. J. 25:110–117 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    Inhalation of inorganic dust (pneumoconiosis). In R. S. Fraser, N. L. Müller, N. Colman, and P. D. Paré (eds.), Fraser and Parés Diagnosis of Diseases of the Chest, Saunders, Philadelphia, PA, 1999, pp. 2449–2450.Google Scholar
  9. 9.
    H. E. Harding, A. I. G. Mclaughlin, and A. T. Doig. Clinical, radiographic, and pathological studies of the lungs of electric-arc and oxyacetylene welders. Lancet 2:394–398 (1958).PubMedCrossRefGoogle Scholar
  10. 10.
    B. Nemery. Metal toxicity and the respiratory tract. Eur. Respir. J. 3:202–219 (1990).PubMedGoogle Scholar
  11. 11.
    B. Gilks and A. Churg. Aluminum-induced pulmonary fibrosis: do fibers play a role? Am. Rev. Respir. Dis. 136:176–179 (1987).PubMedGoogle Scholar
  12. 12.
    A. Eklund, A. Arns, E. Blaschke, J. Hed, S.-O. Hjertquist, K. Larsson, et al. Characteristics of alveolar cells and soluble components in bronchoalveolar lavage fluid from non-smoking aluminum potroom workers. Br. J. Ind. Med. 46:782–786 (1989).PubMedGoogle Scholar
  13. 13.
    K. Steenland, D. Loomis, C. Shy, et al. Review of occupational lung carcinogens. Am. J. Ind. Med. 29:474–490 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    C. S. Jensen, S. Lisby, O. Baadsgaard, A. Volund, and T. Menne. Decrease in nickel sensitization in a Danish schoolgirl with pierced ears after implementation of a nickel exposure regulation. Br. J. Dermatol. 146:643–648 (2002).CrossRefGoogle Scholar
  15. 15.
    J. Dolovich, S. L. Evans, and E. Nieboer. Occupational asthma from nickel sensitivity. I. Human serum albumin in the antigenic determinant. Br. J. Ind. Med. 41:51–55 (1984).PubMedGoogle Scholar
  16. 16.
    E. Nieboer, S. L. Evans, and J. Dolovich. Occupational asthma from nickel sensitivity. II. Factors influencing thee interaction of Ni2+, HSA, and serum antibodies with nickel related specificity. Br. J. Ind. Med. 41:56–63 (1984).PubMedGoogle Scholar
  17. 17.
    S. Zhicheng. Acute nickel carbonyl poisoning: a report of 179 cases. Br. J. Ind. Med. 43:422–424 (1986).Google Scholar
  18. 18.
    L. Ricciardi, S. Gangemi, S. Isola, O. Fogliani, S. Saitta, and F. Purello-D’Ambrosio. Nickel allergy, a model for food cellular hypersensitivity? Allergy 56(Suppl 67):109–112 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    G. N. Flint and J. Packirisamy. Systemic nickel: the contribution made by stainless steel cooking utensils. Contact Dermatitis 32:218–224 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • James Blanchard
    • 1
  • James Coleman
    • 1
  • Courtney Crim
    • 1
  • Claire D’Abreu-Hayling
    • 1
  • Lou Fries
    • 1
  • Raouf Ghaderi
    • 1
  • Barbara Haeberlin
    • 1
  • Richard Malcolmson
    • 1
  • Stanley Mittelman
    • 1
  • Lee Nagao
    • 1
    • 2
  • Ilie Saracovan
    • 1
  • Liuda Shtohryn
    • 1
  • Caesar Snodgrass-Pilla
    • 1
  • Mikael Sundahl
    • 1
  • Ronald Wolff
    • 1
  1. 1.International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS)WashingtonUSA
  2. 2.IPAC-RS SecretariatWashingtonUSA

Personalised recommendations