Advertisement

Pharmaceutical Research

, Volume 24, Issue 2, pp 228–238 | Cite as

Gene Therapy of the Other Genome: The Challenges of Treating Mitochondrial DNA Defects

  • Gerard G. M. D’Souza
  • Sarathi V. Boddapati
  • Volkmar WeissigEmail author
Research Paper

Abstract

Human mitochondrial DNA is a 16.5 kb circular DNA molecule located inside the mitochondrial matrix. Although accounting for only about 1% of total cellular DNA, defects in mitochondrial DNA have been found to have major effects on human health. A single mtDNA mutation may cause a bewildering variety of clinical symptoms mainly involving the neuromuscular system at any age of onset. Despite significant advances in the understanding of mitochondrial DNA defects at a molecular level, the clinical diagnosis of mtDNA diseases remains a significant challenge and effective therapies for such diseases are as yet unavailable. In contrast to gene therapy for chromosomal DNA defects, mitochondrial gene therapy is a field that is still in its infancy and attempts towards gene therapy of the mitochondrial genome are rare. In this review we outline what we believe are the unique challenges associated with the correction of mtDNA mutations and summarize current approaches to gene therapy for the “other genome”.

Key words

delocalized cations DQAsomes gene therapy liposomes mitochondria mitochondrial DNA delivery mitochondrial targeting nonviral vectors 

Notes

Acknowledgments

The authors are grateful for funding received over the past 5 years from the Muscular Dystrophy Association (Tucson, AZ), the United Mitochondrial Disease Foundation (Pittsburgh, PA) and from Northeastern University (Boston, MA).

References

  1. 1.
    N. J. Hoogenraad, L. A. Ward, and M. T. Ryan. Import and assembly of proteins into mitochondria of mammalian cells. Biochim. Biophys. Acta 1592(1):97–105 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Schatz and B. Dobberstein. Common principles of protein translocation across membranes. Science 271(5255):1519–1526 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    E. D. Robin and R. Wong. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136(3):507–513 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Satoh and T. Kuroiwa. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Ex. Cell Res. 196(1):137–140 (1991).CrossRefGoogle Scholar
  5. 5.
    I. E. Scheffler. Mitochondria make a come back. Adv. Drug Deliv. Rev. 49(1–2):3–26 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    B. Thyagarajan, R. A. Padua, and C. Campbell. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 271(44):27536–27543 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    M. D’Aurelio, et al. Heterologous mitochondrial DNA recombination in human cells. Hum. Mol. Genet. 13(24):3171–3179 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    P.A. Mason, et al. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 31(3):1052–1058 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Solignac, M. Monnerot, and J. C. Mounolou. Mitochondrial DNA heteroplasmy in Drosophila mauritiana. Proc. Natl. Acad. Sci. USA 80(22):6942–6946 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Chomyn, et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. USA 89(10):4221–4225 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    M. G. Hanna, et al. Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A->G (MERRF) mutation: relationship to proportion of mutant mitochondrial DNA. J. Neurol. Sci. 130(2):154–160 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Pulkes and M. G. Hanna. Human mitochondrial DNA diseases. Adv. Drug Deliv. Rev. 49(1–2):27–43 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    R. K. Naviaux. Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 4(5–6):351–361 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    D. C. Wallace, et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242(4884):1427–1430 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    I. J. Holt, A. E. Harding, and J. A. Morgan-Hughes. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158):717–719 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    D. C. Wallace. Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488 (1999)PubMedCrossRefGoogle Scholar
  17. 17.
    S. Papa, et al. Mitochondrial diseases and aging. Mol. Aspects Med. 17(6):513–563 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    D. C. De Vivo. Mitochondrial DNA defects: clinical features. In S. DiMauro and D. C. Wallace (eds.), Mitochondrial DNA in Human Pathology, Raven Press, Ltd., New York, 1993, pp. 39–52.Google Scholar
  19. 19.
    A. Munnich and P. Rustin. Clinical spectrum and diagnosis of mitochondrial disorders. Am. J. of Med. Genet. 106(1):4–17 (2001).PubMedCrossRefGoogle Scholar
  20. 20.
    Z. M. Chrzanowska-Lightowlers, et al. Conversion of a reporter gene for mitochondrial gene expression using iterative mega-prime PCR. Gene 230(2):241–247 (1999).PubMedCrossRefGoogle Scholar
  21. 21.
    R.W.Taylor, et al. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat. Genet. 15(2):212–215 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    R. W. Taylor, et al., In-vitro genetic modification of mitochondrial function. Hum. Reprod. 15(Suppl 2):79–85 (2000).PubMedGoogle Scholar
  23. 23.
    R. W. Taylor, et al. Molecular basis for treatment of mitochondrial myopathies. Neurol. Sci. 21(Suppl 5):S909–S912 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    R. W. Taylor, et al. An antigenomic strategy for treating heteroplasmic mtDNA disorders. Adv. Drug Deliv. Rev. 49(1–2):121–125 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    R. E. Sobol and K. J. Scanlon (eds.), The Internet Book of Gene Therapy, Appleton and Lange, Stanford, CT, 1995.Google Scholar
  26. 26.
    A. Rolland (ed.), Advanced Gene Delivery, Harwood Academic, Amsterdam, 1999.Google Scholar
  27. 27.
    F. D. Ledley. Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13(11):1595–1614 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Gergoriadis and B. McCormack (eds.), Targeting of Drugs; Strategies for Gene Constructs and Delivery, IOS Press: Amsterdam, 2000.Google Scholar
  29. 29.
    P. Nagley and R. J. Devenish. Leading organellar proteins along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends Biochem. Sci. 14:31–35 (1989).CrossRefGoogle Scholar
  30. 30.
    S. J. Zullo. Gene therapy of mitochondrial DNA mutations: a brief, biased history of allotopic expression in mammalian cells. Semin. Neurol. 21(3):327–335 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Nagley, et al. Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc. Nat. Acad. Sci. USA 85(7):2091–2095 (1988).CrossRefGoogle Scholar
  32. 32.
    G. Manfredi, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat. Genet. 30(4):394–399 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    S. J. Zullo, et al. Stable transformation of CHO cells and human NARP cybrids confers oligomycin resistance (oli(r)) following transfer of a mitochondrial DNA-encoded oli(r) ATPase6 gene to the nuclear genome: a model system for mtDNA gene therapy. Rejuvenation Res. 8(1):18–28 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Guy, et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann. Neurol. 52(5):534–42 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    Y. Bai, et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J. Biol. Chem. 276(42):38808–38813 (2001).PubMedCrossRefGoogle Scholar
  36. 36.
    B. B. Seo, A. Matsuno-Yagi, and T. Yagi. Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1412(1):56–65 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    B. B. Seo, et al. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl. Acad. Sci. USA 95(16):9167–9171 (1998).PubMedCrossRefGoogle Scholar
  38. 38.
    B. B. Seo, et al. Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum. Gene Ther. 15(9):887–895 (2004).PubMedCrossRefGoogle Scholar
  39. 39.
    G. A Hakkaart, et al. Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration. EMBO Rep. 7(3):341–345 (2006).PubMedCrossRefGoogle Scholar
  40. 40.
    O. A. Kolesnikova, et al. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289(5486):1931–1933 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    H. A. Kazakova, et al. The aminoacceptor stem of the yeast tRNA(Lys) contains determinants of mitochondrial import selectivity. FEBS Lett. 442(2–3):193–197 (1999).PubMedCrossRefGoogle Scholar
  42. 42.
    N. S. Entelis, et al. Structural requirements of tRNALys for its import into yeast mitochondria. Proc. Natl. Acad. Sci. USA 95(6):2838–2843 (1998).PubMedCrossRefGoogle Scholar
  43. 43.
    N. S. Entelis, et al. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J. Biol. Chem. 276(49):45642–45653 (2001).PubMedCrossRefGoogle Scholar
  44. 44.
    O. A. Kolesnikova, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum. Mol. Genet. 13(20):2519–2534 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Srivastava and C. T. Moraes. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum. Mol. Genet. 10(26):3093–3099(2001).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Tanaka, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9(6 Pt 1):534–541 (2002).PubMedGoogle Scholar
  47. 47.
    Y. Nakabeppu. Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog. Nucleic Acid Res. Mol. Biol. 68:75–94 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    L. I. Rachek, et al. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J. Biol. Chem. 277(47):44932–44937 (2002).PubMedCrossRefGoogle Scholar
  49. 49.
    N. M. Druzhyna, et al. Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42(4):370–378 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    A. K. Rasmussen and L. J. Rasmussen. Targeting of O6-MeG DNA methyltransferase (MGMT) to mitochondria protects against alkylation induced cell death. Mitochondrion 5(6):411–417 (2005).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Cai, et al. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents. Cancer Res. 65(8):3319–3327 (2005).PubMedGoogle Scholar
  52. 52.
    G. M. Attardi. Role of mitochondrial DNA in aging processes. Scientific World Journal 1(1 Suppl 3):76 (2001).CrossRefGoogle Scholar
  53. 53.
    J. F. Allen. The function of genomes in bioenergetic organelles. Philos. Trans. R. Soc. Lond., B Biol. Sci. 358(1429):19–37 (2003); discussion 37–38.CrossRefGoogle Scholar
  54. 54.
    V. Weissig and V. P. Torchilin. Towards mitochondrial gene therapy: DQAsomes as a strategy. J. Drug Target. 9(1):1–13 (2001).PubMedCrossRefGoogle Scholar
  55. 55.
    A. D. de Grey. Mitochondrial gene therapy: an arena for the biomedical use of inteins. Trends Biotechnol. 18(9):394–399 (2000).PubMedCrossRefGoogle Scholar
  56. 56.
    J. M. Collombet, et al. Introduction of plasmid DNA into isolated mitochondria by electroporation. A novel approach toward gene correction for mitochondrial disorders. J. Biol. Chem. 272(8):5342–5347 (1997).PubMedCrossRefGoogle Scholar
  57. 57.
    R. A. Butow and T. D. Fox. Organelle transformation: shoot first, ask questions later. Trends Biochem. Sci. 15(12):465–468 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    C. Remacle, et al. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc. Natl. Acad. Sci. USA 103(12):4771–4776 (2006).PubMedCrossRefGoogle Scholar
  59. 59.
    S. A. Johnston, et al. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240(4858):1538–1541(1988)PubMedCrossRefGoogle Scholar
  60. 60.
    R. A. Butow, et al. Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol. 264:265–278 (1996).PubMedCrossRefGoogle Scholar
  61. 61.
    M .A. Clark and J.W. Shay. Mitochondrial transformation of mammalian cells. Nature 295(5850):605–607 (1982).PubMedCrossRefGoogle Scholar
  62. 62.
    J. L. Spees, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA 103(5):1283–1288 (2006).PubMedCrossRefGoogle Scholar
  63. 63.
    P. Seibel, et al. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res. 23(1):10–17 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    D. Vestweber and G. Schatz. DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338(6211):170–172 (1989).PubMedCrossRefGoogle Scholar
  65. 65.
    A. Flierl, et al. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Molec. Ther. 7(4):550–557 (2003).CrossRefGoogle Scholar
  66. 66.
    V. Geromel, et al. Mitochondria transfection by oligonucleotides containing a signal peptide and vectorized by cationic liposomes. Antisense Nucleic Acid Drug Dev. 11(3):175–180 (2001).PubMedCrossRefGoogle Scholar
  67. 67.
    A. Muratovska, et al. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 29(9):1852–1863 (2001).PubMedCrossRefGoogle Scholar
  68. 68.
    B. T. Kren, et al. Oligonucleotide-mediated site-directed gene repair. Methods Enzymol. 346:14–35 (2002).PubMedCrossRefGoogle Scholar
  69. 69.
    B. T. Kren, et al. Modification of hepatic genomic DNA using RNA/DNA oligonucleotides. Gene Ther. 9(11):686–690 (2002).PubMedCrossRefGoogle Scholar
  70. 70.
    P. Bandyopadhyay, et al. Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J. Biol. Chem. 274(15):10163–10172 (1999).PubMedCrossRefGoogle Scholar
  71. 71.
    B. T. Kren, et al. Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 25(6):1462–1468 (1997).PubMedCrossRefGoogle Scholar
  72. 72.
    A. M. James, et al. Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiaze pin-5-on-8-oxy)butyl]-triphenylphosphonium iodide. Eur. J. Biochem. 270(13):2827–2836 (2003).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Koulintchenko, Y. Konstantinov, and A. Dietrich. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 22(6):1245–1254 (2003).PubMedCrossRefGoogle Scholar
  74. 74.
    G. G. D’Souza, S. V. Boddapati, and V. Weissig. Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5(5):352–358 (2005).PubMedCrossRefGoogle Scholar
  75. 75.
    M. Koulintchenko, et al. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum. Mol. Genet. 15(1):143–154 (2006).PubMedCrossRefGoogle Scholar
  76. 76.
    C. A. Pinkert, et al. Mitochondria transfer into mouse ova by microinjection. Transgenic Res. 6(6):379–383 (1997).PubMedCrossRefGoogle Scholar
  77. 77.
    Y. Kagawa and J. I. Hayashi. Gene therapy of mitochondrial diseases using human cytoplasts. Gene Ther. 4(1):6–10 (1997).PubMedCrossRefGoogle Scholar
  78. 78.
    Y. Kagawa, Y. Inoki, and H. Endo. Gene therapy by mitochondrial transfer. Adv. Drug Deliv. Rev. 49(1–2):107–19 (2001).PubMedCrossRefGoogle Scholar
  79. 79.
    Y. G. Yoon and M. D. Koob. Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res. 33(16):e139 (2005).PubMedCrossRefGoogle Scholar
  80. 80.
    Y. G. Yoon and M. D. Koob. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res. 31(5):1407–1415 (2003).PubMedCrossRefGoogle Scholar
  81. 81.
    R. R. Novoa, et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97(2):147–172 (2005).PubMedCrossRefGoogle Scholar
  82. 82.
    C. Valentin, et al. Molecular basis for mitochondrial localization of viral particles during beet necrotic yellow vein virus infection. J. Virol. 79(15):9991–10002 (2005).PubMedCrossRefGoogle Scholar
  83. 83.
    M. D. Beatch and T. C. Hobman. Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J. Virol. 74(12):5569–5576 (2000).PubMedCrossRefGoogle Scholar
  84. 84.
    S. M. Khan and J. P. Bennett Jr. Development of mitochondrial gene replacement therapy. J. Bioenerg. Biomembr 36(4):387–393 (2004).CrossRefGoogle Scholar
  85. 85.
    G. G. D’Souza and V. Weissig. Approaches to mitochondrial gene therapy. Current Gene Therapy 4(3):317–328 (2004).PubMedGoogle Scholar
  86. 86.
    V. Weissig. Mitochondrial-targeted drug and DNA delivery. Crit. Rev. Ther. Drug Carrier Syst. 20(1):1–62 (2003).PubMedCrossRefGoogle Scholar
  87. 87.
    S. V. Boddapati, et al. Mitochondriotropic liposomes. J Liposome Res 15(1–2):49–58 (2005).PubMedGoogle Scholar
  88. 88.
    V. Weissig and V. P. Torchilin. Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr. Pharm. Biotechnol. 1(4):325–346 (2000).PubMedCrossRefGoogle Scholar
  89. 89.
    V. Weissig and V. P. Torchilin. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv. Drug Deliv. Rev. 49(1–2):127–149 (2001)PubMedCrossRefGoogle Scholar
  90. 90.
    V. Weissig, G. G. D’Souza, and V. P. Torchilin. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J. Control. Release 75(3):401–408 (2001)PubMedCrossRefGoogle Scholar
  91. 91.
    J. Lasch, et al. Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol. Chem. 380(6):647–652 (1999)PubMedCrossRefGoogle Scholar
  92. 92.
    G. G. D’Souza, et al. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J. Control. Release 92(1–2):189–197 (2003).PubMedCrossRefGoogle Scholar
  93. 93.
    S. Sullivan, Y. Gong, and J. Hughes. Cationic liposomes in gene delivery. In V. P. Torchilin and V. Weissig (eds.), Liposomes: A Practical Approach, Oxford University Press, Oxford, 2003.Google Scholar
  94. 94.
    J. S. Cohen and T. D. Fox. Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion 1(2):181–189 (2001).PubMedCrossRefGoogle Scholar
  95. 95.
    J. M. Buzan and R. L. Low. Preference of human mitochondrial RNA polymerase for superhelical templates with mitochondrial promoters. Biochem. Biophys. Res. Commun. 152(1):22–29 (1988).PubMedCrossRefGoogle Scholar
  96. 96.
    V. C. Wheeler, et al. Synthesis of a modified gene encoding human ornithine transcarbamylase for expression in mammalian mitochondrial and universal translation systems: a novel approach towards correction of a genetic defect. Gene 169(2):251–255 (1996).PubMedCrossRefGoogle Scholar
  97. 97.
    B. W. Bigger, et al. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 276(25):23018–23027 (2001).PubMedCrossRefGoogle Scholar
  98. 98.
    V. C. Wheeler, M. Aitken, and C. Coutelle. Modification of the mouse mitochondrial genome by insertion of an exogenous gene. Gene 198(1–2):203–209 (1997).PubMedCrossRefGoogle Scholar
  99. 99.
    M. Jazayeri, et al. Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J. Biol. Chem. 278(11):9823–9830 (2003).PubMedCrossRefGoogle Scholar
  100. 100.
    M. P. King and G. Attardi. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246(4929):500–503 (1989).PubMedCrossRefGoogle Scholar
  101. 101.
    K. Inoue, et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet. 26(2):176–181 (2000).PubMedCrossRefGoogle Scholar
  102. 102.
    K. A. Inoue, A. Ogura, and J. Hayashi. Production of mitochondrial DNA transgenic mice using zygotes. Methods 26(4):358–363 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Gerard G. M. D’Souza
    • 1
  • Sarathi V. Boddapati
    • 1
  • Volkmar Weissig
    • 1
    Email author
  1. 1.Bouvé College of Health Sciences, Department of Pharmaceutical SciencesNortheastern UniversityBostonUSA

Personalised recommendations